add color framework to prepare for spectral rendering

feature/spectral
jbb01 6 months ago
parent 23c7a550ec
commit c9db3bf94b

@ -1,6 +1,5 @@
package eu.jonahbauer.raytracing; package eu.jonahbauer.raytracing;
import eu.jonahbauer.raytracing.math.AABB;
import eu.jonahbauer.raytracing.math.Vec3; import eu.jonahbauer.raytracing.math.Vec3;
import eu.jonahbauer.raytracing.render.texture.CheckerTexture; import eu.jonahbauer.raytracing.render.texture.CheckerTexture;
import eu.jonahbauer.raytracing.render.texture.Color; import eu.jonahbauer.raytracing.render.texture.Color;
@ -293,7 +292,7 @@ public class Examples {
return new Example( return new Example(
new Scene(getSkyBox(), List.of( new Scene(getSkyBox(), List.of(
new Sphere(Vec3.ZERO, 2, new LambertianMaterial(new ImageTexture("/earthmap.jpg"))) new Sphere(Vec3.ZERO, 2, new LambertianMaterial(new ImageTexture("/eu/jonahbauer/raytracing/textures/earthmap.jpg")))
)), )),
SimpleCamera.builder() SimpleCamera.builder()
.withImage(height * 16 / 9, height) .withImage(height * 16 / 9, height)
@ -369,7 +368,7 @@ public class Examples {
)); ));
// textures spheres // textures spheres
objects.add(new Sphere(new Vec3(400, 200, 400), 100, new LambertianMaterial(new ImageTexture("/earthmap.jpg")))); objects.add(new Sphere(new Vec3(400, 200, 400), 100, new LambertianMaterial(new ImageTexture("/eu/jonahbauer/raytracing/textures/earthmap.jpg"))));
objects.add(new Sphere(new Vec3(220, 280, 300), 80, new LambertianMaterial(new PerlinTexture(0.2)))); objects.add(new Sphere(new Vec3(220, 280, 300), 80, new LambertianMaterial(new PerlinTexture(0.2))));
// box from spheres // box from spheres

@ -0,0 +1,255 @@
package eu.jonahbauer.raytracing.math;
import org.jetbrains.annotations.NotNull;
import java.util.Objects;
public record Matrix3(
double a11, double a12, double a13,
double a21, double a22, double a23,
double a31, double a32, double a33
) {
public static @NotNull Matrix3 fromRows(@NotNull Vec3 @NotNull[] rows) {
if (rows.length != 3) throw new IllegalArgumentException();
return fromRows(rows[0], rows[1], rows[2]);
}
public static @NotNull Matrix3 fromRows(@NotNull Vec3 row0, @NotNull Vec3 row1, @NotNull Vec3 row2) {
return new Matrix3(
row0.x(), row0.y(), row0.z(),
row1.x(), row1.y(), row1.z(),
row2.x(), row2.y(), row2.z()
);
}
public static @NotNull Matrix3 fromColumns(@NotNull Vec3 @NotNull[] cols) {
if (cols.length != 3) throw new IllegalArgumentException();
return fromColumns(cols[0], cols[1], cols[2]);
}
public static @NotNull Matrix3 fromColumns(@NotNull Vec3 col0, @NotNull Vec3 col1, @NotNull Vec3 col2) {
return new Matrix3(
col0.x(), col1.x(), col2.x(),
col0.y(), col1.y(), col2.y(),
col0.z(), col1.z(), col2.z()
);
}
public static @NotNull Matrix3 fromArray(double @NotNull[] @NotNull[] array) {
return new Matrix3(
array[0][0], array[0][1], array[0][2],
array[1][0], array[1][1], array[1][2],
array[2][0], array[2][1], array[2][2]
);
}
public Matrix3() {
this(1, 1, 1);
}
public Matrix3(double a11, double a22, double a33) {
this(a11, 0, 0, 0, a22, 0, 0, 0, a33);
}
public @NotNull Matrix3 times(@NotNull Matrix3 other) {
return new Matrix3(
a11 * other.a11 + a12 * other.a21 + a13 * other.a31,
a11 * other.a12 + a12 * other.a22 + a13 * other.a32,
a11 * other.a13 + a12 * other.a23 + a13 * other.a33,
a21 * other.a11 + a22 * other.a21 + a23 * other.a31,
a21 * other.a12 + a22 * other.a22 + a23 * other.a32,
a21 * other.a13 + a22 * other.a23 + a23 * other.a33,
a31 * other.a11 + a32 * other.a21 + a33 * other.a31,
a31 * other.a12 + a32 * other.a22 + a33 * other.a32,
a31 * other.a13 + a32 * other.a23 + a33 * other.a33
);
}
public @NotNull Matrix3 times(double other) {
return new Matrix3(
a11 * other, a12 * other, a13 * other,
a21 * other, a22 * other, a23 * other,
a31 * other, a32 * other, a33 * other
);
}
public @NotNull Vec3 times(@NotNull Vec3 other) {
return new Vec3(
a11 * other.x() + a12 * other.y() + a13 * other.z(),
a21 * other.x() + a22 * other.y() + a23 * other.z(),
a31 * other.x() + a32 * other.y() + a33 * other.z()
);
}
public @NotNull Matrix3 plus(@NotNull Matrix3 other) {
return new Matrix3(
a11 + other.a11, a12 + other.a12, a13 + other.a13,
a21 + other.a21, a22 + other.a22, a23 + other.a23,
a31 + other.a31, a32 + other.a32, a33 + other.a33
);
}
public double det() {
return a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32
- a13 * a22 * a31 - a23 * a32 * a11 - a33 * a12 * a21;
}
public @NotNull Matrix3 invert() {
var det = det();
if (det == 0) throw new IllegalStateException();
var t = 1 / det;
return new Matrix3(
t * (Math.fma( a22, a33, -a23 * a32)),
t * (Math.fma(-a12, a33, a13 * a32)),
t * (Math.fma( a12, a23, -a13 * a22)),
t * (Math.fma(-a21, a33, a23 * a31)),
t * (Math.fma( a11, a33, -a13 * a31)),
t * (Math.fma(-a11, a23, a13 * a21)),
t * (Math.fma( a21, a32, -a22 * a31)),
t * (Math.fma(-a11, a32, a12 * a31)),
t * (Math.fma( a11, a22, -a12 * a21))
);
}
public @NotNull Vec3 column(int i) {
return switch (i) {
case 0 -> new Vec3(a11, a21, a31);
case 1 -> new Vec3(a12, a22, a32);
case 2 -> new Vec3(a13, a23, a33);
default -> throw new IndexOutOfBoundsException(i);
};
}
public @NotNull Vec3 @NotNull[] columns() {
return new Vec3[] {
new Vec3(a11, a21, a31),
new Vec3(a12, a22, a32),
new Vec3(a13, a23, a33)
};
}
public @NotNull Vec3 row(int i) {
return switch (i) {
case 0 -> new Vec3(a11, a12, a13);
case 1 -> new Vec3(a21, a22, a23);
case 2 -> new Vec3(a31, a32, a33);
default -> throw new IndexOutOfBoundsException(i);
};
}
public @NotNull Vec3 @NotNull[] rows() {
return new Vec3[] {
new Vec3(a11, a12, a13),
new Vec3(a21, a22, a23),
new Vec3(a31, a32, a33)
};
}
public double @NotNull[] @NotNull[] toArray() {
return new double[][] {
{a11, a12, a13},
{a21, a22, a23},
{a31, a32, a33}
};
}
public double get(int i, int j) {
Objects.checkIndex(i, 3);
Objects.checkIndex(j, 3);
var idx = 3 * i + j;
return switch (idx) {
case 0 -> a11;
case 1 -> a12;
case 2 -> a13;
case 3 -> a21;
case 4 -> a22;
case 5 -> a23;
case 6 -> a31;
case 7 -> a32;
case 8 -> a33;
default -> throw new AssertionError();
};
}
/**
* Performs lower-upper decomposition with partial pivoting (LUP decomposition) on {@code this} matrix.
* @param tolerance a small tolerance number to detect failure when the matrix is near degenerate
* @see <a href="https://en.wikipedia.org/w/index.php?title=LU_decomposition&oldid=1213102558#C_code_example">LU decomposition Wikipedia, The Free Encyclopedia</a>
*/
public @NotNull LUPDecomposition decompose(double tolerance) {
// unit permutation matrix
var perm = new int[] {0, 1, 2, 3};
var A = toArray();
var N = 3;
for (int i = 0; i < N; i++) {
double maxA = 0.0;
int imax = i;
for (int k = i; k < N; k++) {
double absA = Math.abs(A[k][i]);
if (absA > maxA) {
maxA = absA;
imax = k;
}
}
if (maxA < tolerance) throw new IllegalArgumentException("matrix is degenerate");
if (imax != i) {
// pivoting P
int j = perm[i];
perm[i] = perm[imax];
perm[imax] = j;
// pivoting rows of A
var ptr = A[i];
A[i] = A[imax];
A[imax] = ptr;
// counting pivots starting from N (for determinant)
perm[3]++;
}
for (int j = i + 1; j < N; j++) {
A[j][i] /= A[i][i];
for (int k = i + 1; k < N; k++) {
A[j][k] -= A[j][i] * A[i][k];
}
}
}
return new LUPDecomposition(fromArray(A), perm);
}
public record LUPDecomposition(@NotNull Matrix3 matrix, int @NotNull[] permutation) {
/**
* Solves the equation {@code Ax = b} where {@code A} is the matrix that {@code this} decomposition was derived
* from.
* @param b the right hand side vector
* @return the solution vector
*/
public @NotNull Vec3 solve(@NotNull Vec3 b) {
var N = 3;
var x = new double[N];
for (int i = 0; i < N; i++) {
x[i] = b.get(permutation[i]);
for (int k = 0; k < i; k++) {
x[i] -= matrix.get(i, k) * x[k];
}
}
for (int i = N - 1; i >= 0; i--) {
for (int k = i + 1; k < N; k++) {
x[i] -= matrix.get(i, k) * x[k];
}
x[i] /= matrix.get(i, i);
}
return new Vec3(x[0], x[1], x[2]);
}
}
}

@ -0,0 +1,71 @@
package eu.jonahbauer.raytracing.render.spectral;
import eu.jonahbauer.raytracing.render.spectral.colors.ColorSpace;
import eu.jonahbauer.raytracing.render.spectral.colors.ColorXYZ;
import eu.jonahbauer.raytracing.render.spectral.spectrum.Spectrum;
import eu.jonahbauer.raytracing.render.texture.Color;
import org.jetbrains.annotations.NotNull;
public final class SampledSpectrum {
private final double @NotNull[] values;
public SampledSpectrum(@NotNull SampledWavelengths lambdas, @NotNull Spectrum spectrum) {
var values = new double[lambdas.size()];
for (int i = 0; i < values.length; i++) {
values[i] = spectrum.get(lambdas.get(i));
}
this.values = values;
}
private SampledSpectrum(double @NotNull[] values) {
this.values = values;
}
public static @NotNull SampledSpectrum multiply(@NotNull SampledSpectrum a, @NotNull SampledSpectrum b) {
var out = new double[a.values.length];
for (int i = 0; i < a.values.length; i++) {
out[i] = a.values[i] * b.values[i];
}
return new SampledSpectrum(out);
}
public static @NotNull SampledSpectrum multiply(@NotNull SampledSpectrum a, double b) {
var out = new double[a.values.length];
for (int i = 0; i < a.values.length; i++) {
out[i] = a.values[i] * b;
}
return new SampledSpectrum(out);
}
public static @NotNull SampledSpectrum add(@NotNull SampledSpectrum a, @NotNull SampledSpectrum b) {
var out = new double[a.values.length];
for (int i = 0; i < a.values.length; i++) {
out[i] = a.values[i] + b.values[i];
}
return new SampledSpectrum(out);
}
public double get(int index) {
return values[index];
}
public int size() {
return values.length;
}
public double average() {
double avg = 0;
for (int i = 0; i < values.length; i++) {
avg = Math.fma(1d / (i + 1), values[i] - avg, avg);
}
return avg;
}
public @NotNull ColorXYZ toXYZ(@NotNull SampledWavelengths lambdas) {
return lambdas.toXYZ(this);
}
public @NotNull Color toRGB(@NotNull SampledWavelengths lambdas, @NotNull ColorSpace cs) {
return cs.toRGB(toXYZ(lambdas));
}
}

@ -0,0 +1,93 @@
package eu.jonahbauer.raytracing.render.spectral;
import eu.jonahbauer.raytracing.render.spectral.colors.ColorXYZ;
import eu.jonahbauer.raytracing.render.spectral.spectrum.Spectra;
import eu.jonahbauer.raytracing.render.spectral.spectrum.Spectrum;
import org.jetbrains.annotations.NotNull;
import java.util.Arrays;
/**
* A set of sampled wavelength that can be tracked together.
*/
public final class SampledWavelengths {
public static final int SAMPLES = 4;
private final double @NotNull[] lambdas;
private final double @NotNull[] pdf;
public static @NotNull SampledWavelengths uniform(double rng) {
return uniform(rng, Spectrum.LAMBDA_MIN, Spectrum.LAMBDA_MAX);
}
public static @NotNull SampledWavelengths uniform(double rng, double min, double max) {
var lambdas = new double[SAMPLES];
// choose first sample at random
lambdas[0] = (1 - rng) * min + rng * max;
// choose next samples in equal intervals, wrapping if necessary
var delta = (max - min) / SAMPLES;
for (int i = 1; i < SAMPLES; i++) {
lambdas[i] = lambdas[i - 1] + delta;
if (lambdas[i] > max) {
lambdas[i] = min + (lambdas[i] - max);
}
}
var pdf = new double[SAMPLES];
Arrays.fill(pdf, 1 / (max - min));
return new SampledWavelengths(lambdas, pdf);
}
private SampledWavelengths(double @NotNull[] lambdas, double @NotNull[] pdf) {
this.lambdas = lambdas;
this.pdf = pdf;
}
public double get(int index) {
return lambdas[index];
}
public int size() {
return lambdas.length;
}
/**
* Terminates the secondary wavelengths. This method should be called after a wavelength-dependent operation like
* refraction that makes it incorrect to track multiple wavelengths together.
*/
public void terminateSecondary() {
if (pdf.length < 2 || pdf[1] == 0) return;
Arrays.fill(pdf, 1, pdf.length, 0d);
pdf[0] /= pdf.length;
}
@NotNull
ColorXYZ toXYZ(@NotNull SampledSpectrum spectrum) {
var x = Spectra.X.sample(this);
var y = Spectra.Y.sample(this);
var z = Spectra.Z.sample(this);
return new ColorXYZ(
toXYZ0(spectrum, x) / ColorXYZ.CIE_Y_INTEGRAL,
toXYZ0(spectrum, y) / ColorXYZ.CIE_Y_INTEGRAL,
toXYZ0(spectrum, z) / ColorXYZ.CIE_Y_INTEGRAL
);
}
private double toXYZ0(@NotNull SampledSpectrum spectrum, @NotNull SampledSpectrum cie) {
var avg = 0d;
for (int i = 0; i < spectrum.size(); i++) {
var pdf = this.pdf[i];
double value;
if (pdf == 0) {
value = 0;
} else {
value = spectrum.get(i) * cie.get(i) / pdf;
}
avg = Math.fma(1d / (i + 1), value - avg, avg);
}
return avg;
}
}

@ -0,0 +1,9 @@
package eu.jonahbauer.raytracing.render.spectral.colors;
/**
* A pair of chromaticity coordinates in the xyY color space
* @param x the x coordinate
* @param y the y coordinate
*/
public record Chromaticity(double x, double y) {
}

@ -0,0 +1,116 @@
package eu.jonahbauer.raytracing.render.spectral.colors;
import eu.jonahbauer.raytracing.math.Matrix3;
import eu.jonahbauer.raytracing.math.Vec3;
import eu.jonahbauer.raytracing.render.spectral.spectrum.DenselySampledSpectrum;
import eu.jonahbauer.raytracing.render.spectral.spectrum.Spectrum;
import eu.jonahbauer.raytracing.render.texture.Color;
import org.jetbrains.annotations.NotNull;
import java.util.Objects;
/**
* An RGB color space.
*/
public final class ColorSpace {
private final @NotNull Chromaticity r;
private final @NotNull Chromaticity g;
private final @NotNull Chromaticity b;
private final @NotNull Chromaticity w;
private final @NotNull DenselySampledSpectrum illuminant;
private final @NotNull ColorXYZ R;
private final @NotNull ColorXYZ G;
private final @NotNull ColorXYZ B;
private final @NotNull ColorXYZ W;
private final @NotNull Matrix3 XYZfromRGB;
private final @NotNull Matrix3 RGBfromXYZ;
private final @NotNull SpectrumTable RGBtoSpectrumTable;
public ColorSpace(
@NotNull Chromaticity r, @NotNull Chromaticity g, @NotNull Chromaticity b,
@NotNull Spectrum illuminant, @NotNull SpectrumTable table
) {
this.r = Objects.requireNonNull(r, "r");
this.g = Objects.requireNonNull(g, "g");
this.b = Objects.requireNonNull(b, "b");
this.illuminant = new DenselySampledSpectrum(illuminant);
this.RGBtoSpectrumTable = table;
this.W = illuminant.toXYZ();
this.w = W.xy();
this.R = new ColorXYZ(r);
this.G = new ColorXYZ(g);
this.B = new ColorXYZ(b);
var rgb = new Matrix3(
R.x(), G.x(), B.x(),
R.y(), G.y(), B.y(),
R.z(), G.z(), B.z()
);
var C = rgb.invert().times(W.toVec3());
this.XYZfromRGB = rgb.times(new Matrix3(C.x(), C.y(), C.z()));
this.RGBfromXYZ = XYZfromRGB.invert();
}
public @NotNull Color toRGB(@NotNull ColorXYZ xyz) {
var out = RGBfromXYZ.times(xyz.toVec3());
return new Color(out.x(), out.y(), out.z());
}
public @NotNull ColorXYZ toXYZ(@NotNull Color rgb) {
var out = XYZfromRGB.times(rgb.toVec3());
return new ColorXYZ(out);
}
public @NotNull Vec3 toCIELab(@NotNull Color rgb) {
return toCIELab(toXYZ(rgb));
}
public @NotNull Vec3 toCIELab(@NotNull ColorXYZ xyz) {
return new Vec3(
116 * cieLabCbrt(xyz.y() / W.y()) - 16,
500 * (cieLabCbrt(xyz.x() / W.x()) - cieLabCbrt(xyz.y() / W.y())),
200 * (cieLabCbrt(xyz.y() / W.y()) - cieLabCbrt(xyz.z() / W.z()))
);
}
private static double cieLabCbrt(double x) {
var delta = 6.0 / 29.0;
if (x > delta * delta * delta) {
return Math.cbrt(x);
} else {
return x / (delta * delta * 3.0) + (4.0 / 29.0);
}
}
public @NotNull SigmoidPolynomial toSpectrum(@NotNull Color rgb) {
return RGBtoSpectrumTable.get(new Color(
Math.max(0, rgb.r()),
Math.max(0, rgb.g()),
Math.max(0, rgb.b())
));
}
public @NotNull Chromaticity r() {
return r;
}
public @NotNull Chromaticity g() {
return g;
}
public @NotNull Chromaticity b() {
return b;
}
public @NotNull Chromaticity w() {
return w;
}
public @NotNull DenselySampledSpectrum illuminant() {
return illuminant;
}
}

@ -0,0 +1,44 @@
package eu.jonahbauer.raytracing.render.spectral.colors;
import eu.jonahbauer.raytracing.render.spectral.spectrum.Spectra;
import org.jetbrains.annotations.NotNull;
import java.io.IOException;
import java.io.UncheckedIOException;
import java.util.Objects;
public final class ColorSpaces {
// Rec. ITU-R BT.709.3
public static final @NotNull ColorSpace sRGB = new ColorSpace(
new Chromaticity(0.6400, 0.3300),
new Chromaticity(0.3000, 0.6000),
new Chromaticity(0.1500, 0.0600),
Spectra.D65, read("sRGB_spectrum.bin")
);
// P3-D65 (display)
public static final @NotNull ColorSpace DCI_P3 = new ColorSpace(
new Chromaticity(0.680, 0.320),
new Chromaticity(0.265, 0.690),
new Chromaticity(0.150, 0.060),
Spectra.D65, read("DCI_P3_spectrum.bin")
);
// ITU-R Rec BT.2020
public static final @NotNull ColorSpace Rec2020 = new ColorSpace(
new Chromaticity(0.708, 0.292),
new Chromaticity(0.170, 0.797),
new Chromaticity(0.131, 0.046),
Spectra.D65, read("Rec2020_spectrum.bin")
);
private static @NotNull SpectrumTable read(@NotNull String name) {
try (var in = ColorSpaces.class.getResourceAsStream("/eu/jonahbauer/raytracing/colorspace/" + name)) {
return SpectrumTable.read(Objects.requireNonNull(in));
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
private ColorSpaces() {
throw new UnsupportedOperationException();
}
}

@ -0,0 +1,52 @@
package eu.jonahbauer.raytracing.render.spectral.colors;
import eu.jonahbauer.raytracing.math.Vec3;
import org.jetbrains.annotations.NotNull;
/**
* A CIE XYZ color
*/
public record ColorXYZ(double x, double y, double z) {
public static final double CIE_Y_INTEGRAL = 106.85689500000002;
public ColorXYZ(@NotNull Chromaticity chromaticity) {
this(chromaticity, 1);
}
public ColorXYZ(@NotNull Chromaticity chromaticity, double Y) {
this(
chromaticity.y() == 0 ? 0 : Y * chromaticity.x() / chromaticity.y(),
chromaticity.y() == 0 ? 0 : Y,
chromaticity.y() == 0 ? 0 : Y * (1 - chromaticity.x() - chromaticity.y()) / chromaticity.y()
);
}
public ColorXYZ(@NotNull Vec3 vec) {
this(vec.x(), vec.y(), vec.z());
}
public double average() {
return (x + y + z) / 3;
}
public @NotNull Chromaticity xy() {
var factor = 1 / (x + y + z);
return new Chromaticity(factor * x, factor * y);
}
public @NotNull Vec3 toVec3() {
return new Vec3(x, y, z);
}
public static @NotNull ColorXYZ multiply(@NotNull ColorXYZ a, @NotNull ColorXYZ b) {
return new ColorXYZ(a.x * b.x, a.y * b.y, a.z * b.z);
}
public static @NotNull ColorXYZ multiply(@NotNull ColorXYZ a, double b) {
return new ColorXYZ(a.x * b, a.y * b, a.z * b);
}
public static @NotNull ColorXYZ add(@NotNull ColorXYZ a, @NotNull ColorXYZ b) {
return new ColorXYZ(a.x + b.x, a.y + b.y, a.z + b.z);
}
}

@ -0,0 +1,34 @@
package eu.jonahbauer.raytracing.render.spectral.colors;
import eu.jonahbauer.raytracing.render.spectral.spectrum.Spectrum;
/**
* A function of the form {@code s(p(x))} where {@code p} is a polynomial of second degree and {@code s} is the sigmoid
* function <code>s(x) = 0.5 + x / (2 * sqrt(1 + x^2))</code>.
* <p>
* A function of this form is used to generate a {@link Spectrum} from an RGB value.
*
* @param c0 the coefficient of the quadratic term
* @param c1 the coefficient of the linear term
* @param c2 the coefficient of the constant term
*/
public record SigmoidPolynomial(double c0, double c1, double c2) {
public double get(double x) {
var p = Math.fma(Math.fma(c0, x, c1), x, c2);
if (!Double.isFinite(p)) return p > 0 ? 1 : 0;
return Math.fma(.5 * p, 1 / Math.sqrt(Math.fma(p, p, 1)), .5);
}
public double max() {
// evaluate at the edges
var result = Math.max(get(Spectrum.LAMBDA_MIN), get(Spectrum.LAMBDA_MAX));
var lambda = -c1 / (2 * c0);
if (lambda >= 360 && lambda <= 830) {
// evaluate at the vertex
return Math.max(result, get(lambda));
} else {
return result;
}
}
}

@ -0,0 +1,143 @@
package eu.jonahbauer.raytracing.render.spectral.colors;
import eu.jonahbauer.raytracing.render.texture.Color;
import org.jetbrains.annotations.NotNull;
import java.io.*;
import java.util.Arrays;
/**
* A table of sigmoid polynomials used to convert between RGB values and spectra.
* <p>
* The rgb values are renormalized to xyz coordinates with {@code z} being the largest of the rgb components, and
* {@code x} and {@code y} being the other two rgb components divided by {@code z}. By this construction, {@code x},
* {@code y} and {@code z} are all in the range [0, 1] which allows for better use of the samples in a fixed grid.
* The {@code z} coordinate is additionally remapped using {@link #zNodes} to improve sampling at both ends of the scale.
* <p>
* The coefficients of the sigmoid functions are stored in a flattened five-dimensional array with indices as described
* in {@link #coefficients}.
*/
public final class SpectrumTable {
private final int resolution;
/**
* the remapped {@code z} values
*/
private final double[] zNodes;
/**
* the stored coefficients as a flattened five-dimensional array with the following indices
* <ol>
* <li>the component index of the biggest rgb component</li>
* <li>the {@code z} coordinate</li>
* <li>the {@code y} coordinate</li>
* <li>the {@code x} coordinate</li>
* <li>the coefficient index</li>
* </ol>
*/
private final double[] coefficients;
public static void write(@NotNull SpectrumTable table, @NotNull OutputStream out) throws IOException {
var dos = new DataOutputStream(out);
dos.writeInt(table.resolution);
for (double z : table.zNodes) {
dos.writeDouble(z);
}
for (double c : table.coefficients) {
dos.writeDouble(c);
}
dos.flush();
}
public static @NotNull SpectrumTable read(@NotNull InputStream in) throws IOException {
var dis = new DataInputStream(in);
var resolution = dis.readInt();
var nodes = new double[resolution];
for (int i = 0; i < resolution; i++) {
nodes[i] = dis.readDouble();
}
var table = new double[3 * resolution * resolution * resolution * 3];
for (int i = 0; i < table.length; i++) {
table[i] = dis.readDouble();
}
return new SpectrumTable(resolution, nodes, table);
}
SpectrumTable(int resolution, double @NotNull[] zNodes, double[] coefficients) {
this.resolution = resolution;
this.zNodes = zNodes;
this.coefficients = coefficients;
// check input array lengths
if (zNodes.length != resolution) {
throw new IllegalArgumentException("length of zNodes must be equal to the RESOLUTION");
}
if (coefficients.length != 3 * resolution * resolution * resolution * 3) {
throw new IllegalArgumentException("coefficients length must be 3 * RESOLUTION * RESOLUTION * RESOLUTION * 3");
}
// check ascending zNodes
for (int i = 1; i < resolution; i++) {
if (zNodes[i - 1] >= zNodes[i]) {
throw new IllegalArgumentException("zNodes must be in increasing order");
}
}
if (zNodes[0] != 0.0 || zNodes[zNodes.length - 1] != 1.0) {
throw new IllegalArgumentException("zNodes must start with 0.0 and end with 1.0");
}
}
public @NotNull SigmoidPolynomial get(@NotNull Color color) {
// handle uniform rgb values
if (color.r() == color.g() && color.g() == color.b()) {
return new SigmoidPolynomial(0, 0, (color.r() - .5) / Math.sqrt(color.r() * (1 - color.r())));
}
// find maximum component and compute remapped component values
var max = color.r() > color.g()
? (color.r() > color.b() ? 0 : 2)
: (color.g() > color.b() ? 1 : 2);
var z = color.component(max);
var x = color.component((max + 1) % 3) * (resolution - 1) / z;
var y = color.component((max + 2) % 3) * (resolution - 1) / z;
// compute integer indices and offsets for coefficient interpolation
int xi = Math.min((int) x, resolution - 2);
int yi = Math.min((int) y, resolution - 2);
int zi = Arrays.binarySearch(zNodes, z);
if (zi < 0) {
zi = -zi - 2;
} else if (zi > 0) {
zi = zi - 1;
}
var dx = x - xi;
var dy = y -yi;
var dz = (z - zNodes[zi]) / (zNodes[zi + 1] - zNodes[zi]);
// trilinearly interpolate sigmoid polynomial coefficients
var c = new double[3];
for (int i = 0; i < 3; i++) {
c[i] = lerp(dz,
lerp(dy,
lerp(dx, get(max, zi + 0, yi + 0, xi + 0, i), get(max, zi + 0, yi + 0, xi + 1, i)),
lerp(dx, get(max, zi + 0, yi + 1, xi + 0, i), get(max, zi + 0, yi + 1, xi + 1, i))
),
lerp(dy,
lerp(dx, get(max, zi + 1, yi + 0, xi + 0, i), get(max, zi + 1, yi + 0, xi + 1, i)),
lerp(dx, get(max, zi + 1, yi + 1, xi + 0, i), get(max, zi + 1, yi + 1, xi + 1, i))
)
);
}
return new SigmoidPolynomial(c[0], c[1], c[2]);
}
private double get(int l, int z, int y, int x, int i) {
return coefficients[(((l * resolution + z) * resolution + y) * resolution + x) * 3 + i];
}
private static double lerp(double t, double a, double b) {
return Math.fma(t, b, Math.fma(-t, a, a));
}
}

@ -0,0 +1,205 @@
package eu.jonahbauer.raytracing.render.spectral.colors;
import eu.jonahbauer.raytracing.math.Matrix3;
import eu.jonahbauer.raytracing.math.Vec3;
import eu.jonahbauer.raytracing.render.spectral.spectrum.Spectrum;
import eu.jonahbauer.raytracing.render.texture.Color;
import org.jetbrains.annotations.NotNull;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.Arrays;
import java.util.Objects;
import java.util.stream.IntStream;
/**
* Generates a lookup table for RGB to spectrum conversion.
* <p>
* The spectrum for each RGB value is a {@link SigmoidPolynomial} with coefficients such that the round trip error
* from converting the RGB value to a spectrum and back is minimized.
* <p>
* <img src="doc-files/rgb2spectrum.png">
*/
public final class SpectrumTableGenerator {
private static final double EPSILON = 1e-4;
private static final int ITERATIONS = 15;
private final int resolution = 64;
private final @NotNull ColorSpace cs;
public static void main(String[] args) throws IOException {
var generator = new SpectrumTableGenerator(ColorSpaces.DCI_P3);
var table = generator.generate();
try (var out = Files.newOutputStream(Path.of("DCI_P3_spectrum.bin"))) {
SpectrumTable.write(table, out);
}
}
public SpectrumTableGenerator(@NotNull ColorSpace cs) {
this.cs = Objects.requireNonNull(cs);
}
public @NotNull SpectrumTable generate() {
var scale = new double[resolution];
for (int i = 0; i < scale.length; i++) {
var t = (double) i / (resolution - 1);
scale[i] = smoothstep(smoothstep(t));
}
var table = new double[3 * resolution * resolution * resolution * 3];
for (int l0 = 0; l0 < 3; l0++) {
var l = l0;
IntStream.range(0, resolution).parallel().forEach(i -> {
System.out.println("l = " + l + ", i = " + i);
var x = (double) i / (resolution - 1);
for (int j = 0; j < resolution; j++) {
var y = (double) j / (resolution - 1);
var start = resolution / 5;
var c = new double[3];
for (int k = start; k < resolution; k++) {
var z = scale[k];
var idx = ((((l * resolution + k) * resolution) + j) * resolution + i) * 3;
var color = getColor(l, x, y, z);
generate(color, c, table, idx);
}
Arrays.fill(c, 0);
for (int k = start; k >= 0; --k) {
var z = scale[k];
var idx = ((((l * resolution + k) * resolution) + j) * resolution + i) * 3;
var color = getColor(l, x, y, z);
generate(color, c, table, idx);
}
}
});
}
return new SpectrumTable(resolution, scale, table);
}
private void generate(@NotNull Color rgb, double @NotNull[] c, double @NotNull[] out, int offset) {
gaussNewton(rgb, c, ITERATIONS);
double c0 = 360.0, c1 = 1.0 / (830.0 - 360.0);
double A = c[0], B = c[1], C = c[2];
out[offset] = A * c1 * c1;
out[offset + 1] = B * c1 - 2 * A * c0 * c1 * c1;
out[offset + 2] = C - B * c0 * c1 + A * c0 * c0 * c1 * c1;
}
/**
* Use Gauss-Newton algorithm to calculate coefficients {@code c} of a {@link SigmoidPolynomial} such that the round
* trip error from converting the {@code rgb} value to a spectrum and back is minimized.
* @param rgb the input color
* @param c the coefficients, used as initial values and output
* @param it the number of iterations
*/
private void gaussNewton(@NotNull Color rgb, double @NotNull[] c, int it) {
var bestQuality = Double.POSITIVE_INFINITY;
var bestCoefficients = new double[3];
for (int i = 0; i < it; ++i) {
var polynomial = new SigmoidPolynomial(c[0], c[1], c[2]);
var residual = getResidual(rgb, polynomial);
var jacobian = getJacobian(rgb, polynomial);
var delta = jacobian.decompose(1e-15).solve(residual);
for (int j = 0; j < 3; ++j) {
c[j] -= delta.get(j);
}
// catch runaway
double max = Math.max(Math.max(c[0], c[1]), c[2]);
if (max > 200) {
for (int j = 0; j < 3; ++j) {
c[j] *= 200 / max;
}
}
var quality = residual.squared();
if (quality <= 1e-6) {
return;
} else if (quality < bestQuality) {
bestQuality = quality;
System.arraycopy(c, 0, bestCoefficients, 0, 3);
}
}
System.arraycopy(bestCoefficients, 0, c, 0, 3);
}
/**
* Calculates the Jacobian matrix of the {@code polynomial}.
*/
private @NotNull Matrix3 getJacobian(@NotNull Color rgb, @NotNull SigmoidPolynomial polynomial) {
var jac = new double[3][3];
// central finite difference coefficients for first derivative with sixth-order accuracy
var factors = new double[] { -1d/60, 3d/20, -3d/4, 0, 3d/4, -3d/20, 1d/60 };
for (int i = 0; i < 3; i++) {
var derivative = Vec3.ZERO;
for (int d = - factors.length / 2, j = 0; j < factors.length; d++, j++) {
if (factors[j] == 0) continue;
var tmp = switch (i) {
case 0 -> new SigmoidPolynomial(polynomial.c0() + d * EPSILON, polynomial.c1(), polynomial.c2());
case 1 -> new SigmoidPolynomial(polynomial.c0(), polynomial.c1() + d * EPSILON, polynomial.c2());
case 2 -> new SigmoidPolynomial(polynomial.c0(), polynomial.c1(), polynomial.c2() + d * EPSILON);
default -> throw new AssertionError();
};
var r = getResidual(rgb, tmp);
derivative = Vec3.fma(factors[j], r, derivative);
}
for (int j = 0; j < 3; j++) {
jac[j][i] = derivative.get(j) / EPSILON;
}
}
return new Matrix3(
jac[0][0], jac[0][1], jac[0][2],
jac[1][0], jac[1][1], jac[1][2],
jac[2][0], jac[2][1], jac[2][2]
);
}
/**
* Calculates the difference between the RGB color and the result of converting the RGB color to a spectrum using
* the given coefficients, illuminating it with the color space's standard illuminant, and converting it back to an
* RBG color. The output is a vector in CIE Lab color space.
*/
private @NotNull Vec3 getResidual(@NotNull Color rgb, @NotNull SigmoidPolynomial polynomial) {
var out = new SigmoidPolynomialSpectrum(polynomial, cs).toXYZ();
return cs.toCIELab(rgb).minus(cs.toCIELab(out));
}
private static double smoothstep(double x) {
return x * x * (3.0 - 2.0 * x);
}
private static @NotNull Color getColor(int l, double x, double y, double z) {
var rgb = new double[3];
rgb[l] = z;
rgb[(l + 1) % 3] = x * z;
rgb[(l + 2) % 3] = y * z;
return new Color(rgb[0], rgb[1], rgb[2]);
}
private record SigmoidPolynomialSpectrum(@NotNull SigmoidPolynomial polynomial, @NotNull ColorSpace cs) implements Spectrum {
@Override
public double max() {
return polynomial.max();
}
@Override
public double get(double lambda) {
var l = (lambda - Spectrum.LAMBDA_MIN) / (Spectrum.LAMBDA_MAX - Spectrum.LAMBDA_MIN);
return polynomial.get(l) * cs.illuminant().get(lambda);
}
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.6 KiB

@ -0,0 +1,45 @@
package eu.jonahbauer.raytracing.render.spectral.spectrum;
public final class BlackbodySpectrum implements Spectrum {
/**
* the speed of light in m/s
*/
private static final double c = 299792458d;
/**
* the planck constant in m^2*kg/s
*/
private static final double h = 6.62607015E-34;
/**
* the boltzmann constant in m^2*kg/s^2/K
*/
private static final double k = 1.380649E-23;
/**
* wien's displacement constant in m*K
*/
private static final double b = 2.897771995E-3;
private final double T;
private final double factor;
public BlackbodySpectrum(double T) {
if (T < 0) throw new IllegalArgumentException("T must be non-negative");
this.T = T;
this.factor = 1 / get(b / T);
}
@Override
public double max() {
return 1;
}
@Override
public double get(double lambda) {
lambda *= 1E-9;
var l2 = lambda * lambda;
var x = h * c / (lambda * k * T);
return 2 * h * c * c / (l2 * l2 * lambda) / (Math.exp(x) - 1) * factor;
}
}

@ -0,0 +1,17 @@
package eu.jonahbauer.raytracing.render.spectral.spectrum;
/**
* A constant spectrum.
* @param c the constant value
*/
public record ConstantSpectrum(double c) implements Spectrum {
@Override
public double max() {
return c;
}
@Override
public double get(double lambda) {
return c;
}
}

@ -0,0 +1,59 @@
package eu.jonahbauer.raytracing.render.spectral.spectrum;
import org.jetbrains.annotations.NotNull;
import java.util.Arrays;
/**
* A spectrum sampled in one nanometer intervals.
*/
public final class DenselySampledSpectrum implements Spectrum {
private final double[] samples;
private final int min;
private final double max;
public DenselySampledSpectrum(@NotNull Spectrum spectrum) {
this(spectrum, LAMBDA_MIN, LAMBDA_MAX);
}
public DenselySampledSpectrum(@NotNull Spectrum spectrum, int min, int max) {
if (max - min + 1 <= 0) throw new IllegalArgumentException("samples must not be empty");
this.samples = new double[max - min + 1];
var maxValue = 0d;
for (int lambda = min, i = 0; lambda <= max; lambda++, i++) {
var sample = spectrum.get(lambda);
if (sample > maxValue) maxValue = sample;
this.samples[i] = sample;
}
this.min = min;
this.max = maxValue;
}
public DenselySampledSpectrum(double @NotNull[] samples, int lambdaMin) {
if (samples.length == 0) throw new IllegalArgumentException("samples must not be empty");
this.samples = Arrays.copyOf(samples, samples.length);
this.min = lambdaMin;
this.max = Arrays.stream(this.samples).max().orElseThrow();
}
public @NotNull DenselySampledSpectrum scale(double scale) {
var s = Arrays.copyOf(samples, samples.length);
for (int i = 0; i < s.length; i++) {
s[i] *= scale;
}
return new DenselySampledSpectrum(s, min);
}
@Override
public double max() {
return max;
}
@Override
public double get(double lambda) {
int offset = (int) Math.round(lambda) - min;
if (offset < 0 || offset >= samples.length) return 0;
return samples[offset];
}
}

@ -0,0 +1,58 @@
package eu.jonahbauer.raytracing.render.spectral.spectrum;
import org.jetbrains.annotations.NotNull;
import java.util.Arrays;
public final class PiecewiseLinearSpectrum implements Spectrum {
private final double[] lambdas;
private final double[] values;
private final double max;
public PiecewiseLinearSpectrum(double[] lambdas, double[] values) {
if (lambdas.length != values.length) {
throw new IllegalArgumentException("lambdas and values must have the same length");
}
this.lambdas = Arrays.copyOf(lambdas, lambdas.length);
this.values = Arrays.copyOf(values, values.length);
var max = 0d;
for (int i = 1; i < this.lambdas.length; i++) {
if (this.lambdas[i] <= this.lambdas[i - 1]) {
throw new IllegalArgumentException("lambdas must be in increasing order");
}
if (this.values[i] < 0) {
throw new IllegalArgumentException("values must be non-negative");
} else if (this.values[i] > max) {
max = this.values[i];
}
}
this.max = max;
}
public @NotNull PiecewiseLinearSpectrum scale(double scale) {
var v = Arrays.copyOf(values, values.length);
for (int i = 0; i < v.length; i++) {
v[i] *= scale;
}
return new PiecewiseLinearSpectrum(lambdas, v);
}
@Override
public double max() {
return max;
}
@Override
public double get(double lambda) {
if (lambdas.length == 0 || lambda < lambdas[0] || lambda > lambdas[lambdas.length - 1]) return 0;
if (lambda == lambdas[lambdas.length - 1]) return values[values.length - 1];
var i = Arrays.binarySearch(lambdas, lambda);
if (i < 0) i = -i - 1;
var t = (lambda - lambdas[i]) / (lambdas[i + 1] - lambdas[i]);
return (1 - t) * values[i] + t * values[i + 1];
}
}

@ -0,0 +1,27 @@
package eu.jonahbauer.raytracing.render.spectral.spectrum;
import eu.jonahbauer.raytracing.render.spectral.colors.ColorSpace;
import eu.jonahbauer.raytracing.render.spectral.colors.SigmoidPolynomial;
import eu.jonahbauer.raytracing.render.texture.Color;
import org.jetbrains.annotations.NotNull;
public final class RGBAlbedoSpectrum implements Spectrum {
private final @NotNull SigmoidPolynomial polynomial;
public RGBAlbedoSpectrum(@NotNull ColorSpace cs, @NotNull Color rgb) {
if (rgb.r() < 0 || rgb.r() > 1 || rgb.g() < 0 || rgb.g() > 1 || rgb.b() < 0 || rgb.b() > 1) {
throw new IllegalArgumentException();
}
this.polynomial = cs.toSpectrum(rgb);
}
@Override
public double max() {
return polynomial.max();
}
@Override
public double get(double lambda) {
return polynomial.get(lambda);
}
}

@ -0,0 +1,36 @@
package eu.jonahbauer.raytracing.render.spectral.spectrum;
import eu.jonahbauer.raytracing.render.spectral.colors.ColorSpace;
import eu.jonahbauer.raytracing.render.spectral.colors.SigmoidPolynomial;
import eu.jonahbauer.raytracing.render.texture.Color;
import org.jetbrains.annotations.NotNull;
/**
* A spectrum based on an RGB color used as an illuminant. The spectrum is adjusted to account for the color space's
* standard illuminant.
*/
public final class RGBIlluminantSpectrum implements Spectrum {
private final double scale;
private final @NotNull SigmoidPolynomial polynomial;
private final @NotNull Spectrum illuminant;
public RGBIlluminantSpectrum(@NotNull ColorSpace cs, @NotNull Color rgb) {
if (rgb.r() < 0 || rgb.g() < 0 || rgb.b() < 0) {
throw new IllegalArgumentException();
}
var max = Math.max(rgb.r(), Math.max(rgb.g(), rgb.b()));
this.scale = 2 * max;
this.polynomial = cs.toSpectrum(scale == 0 ? Color.multiply(rgb, scale) : Color.BLACK);
this.illuminant = cs.illuminant();
}
@Override
public double max() {
return scale * polynomial.max() * illuminant.max();
}
@Override
public double get(double lambda) {
return scale * polynomial.get(lambda) * illuminant.get(lambda);
}
}

@ -0,0 +1,30 @@
package eu.jonahbauer.raytracing.render.spectral.spectrum;
import eu.jonahbauer.raytracing.render.spectral.colors.ColorSpace;
import eu.jonahbauer.raytracing.render.spectral.colors.SigmoidPolynomial;
import eu.jonahbauer.raytracing.render.texture.Color;
import org.jetbrains.annotations.NotNull;
public final class RGBUnboundedSpectrum implements Spectrum {
private final double scale;
private final @NotNull SigmoidPolynomial polynomial;
public RGBUnboundedSpectrum(@NotNull ColorSpace cs, @NotNull Color rgb) {
if (rgb.r() < 0 || rgb.g() < 0 || rgb.b() < 0) {
throw new IllegalArgumentException();
}
var max = Math.max(rgb.r(), Math.max(rgb.g(), rgb.b()));
this.scale = 2 * max;
this.polynomial = cs.toSpectrum(scale == 0 ? Color.multiply(rgb, scale) : Color.BLACK);
}
@Override
public double max() {
return scale * polynomial.max();
}
@Override
public double get(double lambda) {
return scale * polynomial.get(lambda);
}
}

@ -0,0 +1,407 @@
package eu.jonahbauer.raytracing.render.spectral.spectrum;
import eu.jonahbauer.raytracing.render.spectral.colors.ColorXYZ;
import org.jetbrains.annotations.NotNull;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.UncheckedIOException;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
public final class Spectra {
private static final String PATH_PREFIX = "/eu/jonahbauer/raytracing/spectrum/";
/**
* the CIE XYZ color matching curve for X
*/
public static final Spectrum X = new DenselySampledSpectrum(new PiecewiseLinearSpectrum(CIE_XYZ.CIE_lambda, CIE_XYZ.CIE_X));
/**
* the CIE XYZ color matching curve for Y
*/
public static final Spectrum Y = new DenselySampledSpectrum(new PiecewiseLinearSpectrum(CIE_XYZ.CIE_lambda, CIE_XYZ.CIE_Y));;
/**
* the CIE XYZ color matching curve for Z
*/
public static final Spectrum Z = new DenselySampledSpectrum(new PiecewiseLinearSpectrum(CIE_XYZ.CIE_lambda, CIE_XYZ.CIE_Z));;
/**
* the CIE standard illuminant D50
* @see <a href="https://doi.org/10.25039/CIE.DS.hjfjmt59">CIE 2022, CIE standard illuminant D65, International Commission on Illumination (CIE), Vienna, Austria, DOI: 10.25039/CIE.DS.hjfjmt59</a>
*/
public static final Spectrum D50 = read("CIE_std_illum_D50.csv", true);
/**
* the CIE standard illuminant D65
* @see <a href="https://doi.org/10.25039/CIE.DS.etgmuqt5">CIE 2022, Relative spectral power distributions of CIE standard illuminants A, D65 and D50 (wavelengths in standard air) (data table), International Commission on Illumination (CIE), Vienna, Austria, DOI:10.25039/CIE.DS.etgmuqt5</a>
*/
public static final Spectrum D65 = read("CIE_std_illum_D65.csv", true);
private static @NotNull Spectrum read(@NotNull String path, boolean normalize) {
var lambda = new ArrayList<Double>();
var values = new ArrayList<Double>();
try (
var is = Spectra.class.getResourceAsStream(PATH_PREFIX + path);
var in = new BufferedReader(new InputStreamReader(is, StandardCharsets.US_ASCII))
) {
String line;
while ((line = in.readLine()) != null) {
var parts = line.split(",");
lambda.add(Double.parseDouble(parts[0]));
values.add(Double.parseDouble(parts[1]));
}
} catch (IOException e) {
throw new UncheckedIOException(e);
}
var pls = new PiecewiseLinearSpectrum(
lambda.stream().mapToDouble(Double::doubleValue).toArray(),
values.stream().mapToDouble(Double::doubleValue).toArray()
);
if (normalize) {
return pls.scale(ColorXYZ.CIE_Y_INTEGRAL / Util.innerProduct(pls, Spectra.Y));
} else {
return pls;
}
}
private Spectra() {
throw new UnsupportedOperationException();
}
/**
* @see <a href="https://doi.org/10.25039/CIE.DS.xvudnb9b">CIE 2018, CIE 1931 colour-matching functions , 2 degree observer (data table),
* International Commission on Illumination (CIE), Vienna, Austria,
* DOI:10.25039/CIE.DS.xvudnb9b</a>
*/
private static final class CIE_XYZ {
private static final double[] CIE_lambda = {
360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376,
377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393,
394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410,
411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427,
428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444,
445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461,
462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478,
479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495,
496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512,
513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529,
530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546,
547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563,
564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580,
581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597,
598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614,
615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631,
632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648,
649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665,
666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682,
683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699,
700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716,
717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733,
734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750,
751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767,
768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784,
785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801,
802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818,
819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830
};
private static final double[] CIE_X = {
// CIE X function values
0.0001299000, 0.0001458470, 0.0001638021, 0.0001840037, 0.0002066902,
0.0002321000, 0.0002607280, 0.0002930750, 0.0003293880, 0.0003699140,
0.0004149000, 0.0004641587, 0.0005189860, 0.0005818540, 0.0006552347,
0.0007416000, 0.0008450296, 0.0009645268, 0.001094949, 0.001231154,
0.001368000, 0.001502050, 0.001642328, 0.001802382, 0.001995757,
0.002236000, 0.002535385, 0.002892603, 0.003300829, 0.003753236,
0.004243000, 0.004762389, 0.005330048, 0.005978712, 0.006741117,
0.007650000, 0.008751373, 0.01002888, 0.01142170, 0.01286901,
0.01431000, 0.01570443, 0.01714744, 0.01878122, 0.02074801,
0.02319000, 0.02620736, 0.02978248, 0.03388092, 0.03846824,
0.04351000, 0.04899560, 0.05502260, 0.06171880, 0.06921200,
0.07763000, 0.08695811, 0.09717672, 0.1084063, 0.1207672,
0.1343800, 0.1493582, 0.1653957, 0.1819831, 0.1986110,
0.2147700, 0.2301868, 0.2448797, 0.2587773, 0.2718079,
0.2839000, 0.2949438, 0.3048965, 0.3137873, 0.3216454,
0.3285000, 0.3343513, 0.3392101, 0.3431213, 0.3461296,
0.3482800, 0.3495999, 0.3501474, 0.3500130, 0.3492870,
0.3480600, 0.3463733, 0.3442624, 0.3418088, 0.3390941,
0.3362000, 0.3331977, 0.3300411, 0.3266357, 0.3228868,
0.3187000, 0.3140251, 0.3088840, 0.3032904, 0.2972579,
0.2908000, 0.2839701, 0.2767214, 0.2689178, 0.2604227,
0.2511000, 0.2408475, 0.2298512, 0.2184072, 0.2068115,
0.1953600, 0.1842136, 0.1733273, 0.1626881, 0.1522833,
0.1421000, 0.1321786, 0.1225696, 0.1132752, 0.1042979,
0.09564000, 0.08729955, 0.07930804, 0.07171776, 0.06458099,
0.05795001, 0.05186211, 0.04628152, 0.04115088, 0.03641283,
0.03201000, 0.02791720, 0.02414440, 0.02068700, 0.01754040,
0.01470000, 0.01216179, 0.009919960, 0.007967240, 0.006296346,
0.004900000, 0.003777173, 0.002945320, 0.002424880, 0.002236293,
0.002400000, 0.002925520, 0.003836560, 0.005174840, 0.006982080,
0.009300000, 0.01214949, 0.01553588, 0.01947752, 0.02399277,
0.02910000, 0.03481485, 0.04112016, 0.04798504, 0.05537861,
0.06327000, 0.07163501, 0.08046224, 0.08973996, 0.09945645,
0.1096000, 0.1201674, 0.1311145, 0.1423679, 0.1538542,
0.1655000, 0.1772571, 0.1891400, 0.2011694, 0.2133658,
0.2257499, 0.2383209, 0.2510668, 0.2639922, 0.2771017,
0.2904000, 0.3038912, 0.3175726, 0.3314384, 0.3454828,
0.3597000, 0.3740839, 0.3886396, 0.4033784, 0.4183115,
0.4334499, 0.4487953, 0.4643360, 0.4800640, 0.4959713,
0.5120501, 0.5282959, 0.5446916, 0.5612094, 0.5778215,
0.5945000, 0.6112209, 0.6279758, 0.6447602, 0.6615697,
0.6784000, 0.6952392, 0.7120586, 0.7288284, 0.7455188,
0.7621000, 0.7785432, 0.7948256, 0.8109264, 0.8268248,
0.8425000, 0.8579325, 0.8730816, 0.8878944, 0.9023181,
0.9163000, 0.9297995, 0.9427984, 0.9552776, 0.9672179,
0.9786000, 0.9893856, 0.9995488, 1.0090892, 1.0180064,
1.0263000, 1.0339827, 1.0409860, 1.0471880, 1.0524667,
1.0567000, 1.0597944, 1.0617992, 1.0628068, 1.0629096,
1.0622000, 1.0607352, 1.0584436, 1.0552244, 1.0509768,
1.0456000, 1.0390369, 1.0313608, 1.0226662, 1.0130477,
1.0026000, 0.9913675, 0.9793314, 0.9664916, 0.9528479,
0.9384000, 0.9231940, 0.9072440, 0.8905020, 0.8729200,
0.8544499, 0.8350840, 0.8149460, 0.7941860, 0.7729540,
0.7514000, 0.7295836, 0.7075888, 0.6856022, 0.6638104,
0.6424000, 0.6215149, 0.6011138, 0.5811052, 0.5613977,
0.5419000, 0.5225995, 0.5035464, 0.4847436, 0.4661939,
0.4479000, 0.4298613, 0.4120980, 0.3946440, 0.3775333,
0.3608000, 0.3444563, 0.3285168, 0.3130192, 0.2980011,
0.2835000, 0.2695448, 0.2561184, 0.2431896, 0.2307272,
0.2187000, 0.2070971, 0.1959232, 0.1851708, 0.1748323,
0.1649000, 0.1553667, 0.1462300, 0.1374900, 0.1291467,
0.1212000, 0.1136397, 0.1064650, 0.09969044, 0.09333061,
0.08740000, 0.08190096, 0.07680428, 0.07207712, 0.06768664,
0.06360000, 0.05980685, 0.05628216, 0.05297104, 0.04981861,
0.04677000, 0.04378405, 0.04087536, 0.03807264, 0.03540461,
0.03290000, 0.03056419, 0.02838056, 0.02634484, 0.02445275,
0.02270000, 0.02108429, 0.01959988, 0.01823732, 0.01698717,
0.01584000, 0.01479064, 0.01383132, 0.01294868, 0.01212920,
0.01135916, 0.01062935, 0.009938846, 0.009288422, 0.008678854,
0.008110916, 0.007582388, 0.007088746, 0.006627313, 0.006195408,
0.005790346, 0.005409826, 0.005052583, 0.004717512, 0.004403507,
0.004109457, 0.003833913, 0.003575748, 0.003334342, 0.003109075,
0.002899327, 0.002704348, 0.002523020, 0.002354168, 0.002196616,
0.002049190, 0.001910960, 0.001781438, 0.001660110, 0.001546459,
0.001439971, 0.001340042, 0.001246275, 0.001158471, 0.001076430,
0.0009999493, 0.0009287358, 0.0008624332, 0.0008007503, 0.0007433960,
0.0006900786, 0.0006405156, 0.0005945021, 0.0005518646, 0.0005124290,
0.0004760213, 0.0004424536, 0.0004115117, 0.0003829814, 0.0003566491,
0.0003323011, 0.0003097586, 0.0002888871, 0.0002695394, 0.0002515682,
0.0002348261, 0.0002191710, 0.0002045258, 0.0001908405, 0.0001780654,
0.0001661505, 0.0001550236, 0.0001446219, 0.0001349098, 0.0001258520,
0.0001174130, 0.0001095515, 0.0001022245, 0.00009539445, 0.00008902390,
0.00008307527, 0.00007751269, 0.00007231304, 0.00006745778, 0.00006292844,
0.00005870652, 0.00005477028, 0.00005109918, 0.00004767654, 0.00004448567,
0.00004150994, 0.00003873324, 0.00003614203, 0.00003372352, 0.00003146487,
0.00002935326, 0.00002737573, 0.00002552433, 0.00002379376, 0.00002217870,
0.00002067383, 0.00001927226, 0.00001796640, 0.00001674991, 0.00001561648,
0.00001455977, 0.00001357387, 0.00001265436, 0.00001179723, 0.00001099844,
0.00001025398, 0.000009559646, 0.000008912044, 0.000008308358, 0.000007745769,
0.000007221456, 0.000006732475, 0.000006276423, 0.000005851304, 0.000005455118,
0.000005085868, 0.000004741466, 0.000004420236, 0.000004120783, 0.000003841716,
0.000003581652, 0.000003339127, 0.000003112949, 0.000002902121, 0.000002705645,
0.000002522525, 0.000002351726, 0.000002192415, 0.000002043902, 0.000001905497,
0.000001776509, 0.000001656215, 0.000001544022, 0.000001439440, 0.000001341977,
0.000001251141
};
private static final double[] CIE_Y = {
// CIE Y function values
0.000003917000, 0.000004393581, 0.000004929604, 0.000005532136, 0.000006208245,
0.000006965000, 0.000007813219, 0.000008767336, 0.000009839844, 0.00001104323,
0.00001239000, 0.00001388641, 0.00001555728, 0.00001744296, 0.00001958375,
0.00002202000, 0.00002483965, 0.00002804126, 0.00003153104, 0.00003521521,
0.00003900000, 0.00004282640, 0.00004691460, 0.00005158960, 0.00005717640,
0.00006400000, 0.00007234421, 0.00008221224, 0.00009350816, 0.0001061361,
0.0001200000, 0.0001349840, 0.0001514920, 0.0001702080, 0.0001918160,
0.0002170000, 0.0002469067, 0.0002812400, 0.0003185200, 0.0003572667,
0.0003960000, 0.0004337147, 0.0004730240, 0.0005178760, 0.0005722187,
0.0006400000, 0.0007245600, 0.0008255000, 0.0009411600, 0.001069880,
0.001210000, 0.001362091, 0.001530752, 0.001720368, 0.001935323,
0.002180000, 0.002454800, 0.002764000, 0.003117800, 0.003526400,
0.004000000, 0.004546240, 0.005159320, 0.005829280, 0.006546160,
0.007300000, 0.008086507, 0.008908720, 0.009767680, 0.01066443,
0.01160000, 0.01257317, 0.01358272, 0.01462968, 0.01571509,
0.01684000, 0.01800736, 0.01921448, 0.02045392, 0.02171824,
0.02300000, 0.02429461, 0.02561024, 0.02695857, 0.02835125,
0.02980000, 0.03131083, 0.03288368, 0.03452112, 0.03622571,
0.03800000, 0.03984667, 0.04176800, 0.04376600, 0.04584267,
0.04800000, 0.05024368, 0.05257304, 0.05498056, 0.05745872,
0.06000000, 0.06260197, 0.06527752, 0.06804208, 0.07091109,
0.07390000, 0.07701600, 0.08026640, 0.08366680, 0.08723280,
0.09098000, 0.09491755, 0.09904584, 0.1033674, 0.1078846,
0.1126000, 0.1175320, 0.1226744, 0.1279928, 0.1334528,
0.1390200, 0.1446764, 0.1504693, 0.1564619, 0.1627177,
0.1693000, 0.1762431, 0.1835581, 0.1912735, 0.1994180,
0.2080200, 0.2171199, 0.2267345, 0.2368571, 0.2474812,
0.2586000, 0.2701849, 0.2822939, 0.2950505, 0.3085780,
0.3230000, 0.3384021, 0.3546858, 0.3716986, 0.3892875,
0.4073000, 0.4256299, 0.4443096, 0.4633944, 0.4829395,
0.5030000, 0.5235693, 0.5445120, 0.5656900, 0.5869653,
0.6082000, 0.6293456, 0.6503068, 0.6708752, 0.6908424,
0.7100000, 0.7281852, 0.7454636, 0.7619694, 0.7778368,
0.7932000, 0.8081104, 0.8224962, 0.8363068, 0.8494916,
0.8620000, 0.8738108, 0.8849624, 0.8954936, 0.9054432,
0.9148501, 0.9237348, 0.9320924, 0.9399226, 0.9472252,
0.9540000, 0.9602561, 0.9660074, 0.9712606, 0.9760225,
0.9803000, 0.9840924, 0.9874812, 0.9903128, 0.9928116,
0.9949501, 0.9967108, 0.9980983, 0.9991120, 0.9997482,
1.0000000, 0.9998567, 0.9993046, 0.9983255, 0.9968987,
0.9950000, 0.9926005, 0.9897426, 0.9864444, 0.9827241,
0.9786000, 0.9740837, 0.9691712, 0.9638568, 0.9581349,
0.9520000, 0.9454504, 0.9384992, 0.9311628, 0.9234576,
0.9154000, 0.9070064, 0.8982772, 0.8892048, 0.8797816,
0.8700000, 0.8598613, 0.8493920, 0.8386220, 0.8275813,
0.8163000, 0.8047947, 0.7930820, 0.7811920, 0.7691547,
0.7570000, 0.7447541, 0.7324224, 0.7200036, 0.7074965,
0.6949000, 0.6822192, 0.6694716, 0.6566744, 0.6438448,
0.6310000, 0.6181555, 0.6053144, 0.5924756, 0.5796379,
0.5668000, 0.5539611, 0.5411372, 0.5283528, 0.5156323,
0.5030000, 0.4904688, 0.4780304, 0.4656776, 0.4534032,
0.4412000, 0.4290800, 0.4170360, 0.4050320, 0.3930320,
0.3810000, 0.3689184, 0.3568272, 0.3447768, 0.3328176,
0.3210000, 0.3093381, 0.2978504, 0.2865936, 0.2756245,
0.2650000, 0.2547632, 0.2448896, 0.2353344, 0.2260528,
0.2170000, 0.2081616, 0.1995488, 0.1911552, 0.1829744,
0.1750000, 0.1672235, 0.1596464, 0.1522776, 0.1451259,
0.1382000, 0.1315003, 0.1250248, 0.1187792, 0.1127691,
0.1070000, 0.1014762, 0.09618864, 0.09112296, 0.08626485,
0.08160000, 0.07712064, 0.07282552, 0.06871008, 0.06476976,
0.06100000, 0.05739621, 0.05395504, 0.05067376, 0.04754965,
0.04458000, 0.04175872, 0.03908496, 0.03656384, 0.03420048,
0.03200000, 0.02996261, 0.02807664, 0.02632936, 0.02470805,
0.02320000, 0.02180077, 0.02050112, 0.01928108, 0.01812069,
0.01700000, 0.01590379, 0.01483718, 0.01381068, 0.01283478,
0.01192000, 0.01106831, 0.01027339, 0.009533311, 0.008846157,
0.008210000, 0.007623781, 0.007085424, 0.006591476, 0.006138485,
0.005723000, 0.005343059, 0.004995796, 0.004676404, 0.004380075,
0.004102000, 0.003838453, 0.003589099, 0.003354219, 0.003134093,
0.002929000, 0.002738139, 0.002559876, 0.002393244, 0.002237275,
0.002091000, 0.001953587, 0.001824580, 0.001703580, 0.001590187,
0.001484000, 0.001384496, 0.001291268, 0.001204092, 0.001122744,
0.001047000, 0.0009765896, 0.0009111088, 0.0008501332, 0.0007932384,
0.0007400000, 0.0006900827, 0.0006433100, 0.0005994960, 0.0005584547,
0.0005200000, 0.0004839136, 0.0004500528, 0.0004183452, 0.0003887184,
0.0003611000, 0.0003353835, 0.0003114404, 0.0002891656, 0.0002684539,
0.0002492000, 0.0002313019, 0.0002146856, 0.0001992884, 0.0001850475,
0.0001719000, 0.0001597781, 0.0001486044, 0.0001383016, 0.0001287925,
0.0001200000, 0.0001118595, 0.0001043224, 0.00009733560, 0.00009084587,
0.00008480000, 0.00007914667, 0.00007385800, 0.00006891600, 0.00006430267,
0.00006000000, 0.00005598187, 0.00005222560, 0.00004871840, 0.00004544747,
0.00004240000, 0.00003956104, 0.00003691512, 0.00003444868, 0.00003214816,
0.00003000000, 0.00002799125, 0.00002611356, 0.00002436024, 0.00002272461,
0.00002120000, 0.00001977855, 0.00001845285, 0.00001721687, 0.00001606459,
0.00001499000, 0.00001398728, 0.00001305155, 0.00001217818, 0.00001136254,
0.00001060000, 0.000009885877, 0.000009217304, 0.000008592362, 0.000008009133,
0.000007465700, 0.000006959567, 0.000006487995, 0.000006048699, 0.000005639396,
0.000005257800, 0.000004901771, 0.000004569720, 0.000004260194, 0.000003971739,
0.000003702900, 0.000003452163, 0.000003218302, 0.000003000300, 0.000002797139,
0.000002607800, 0.000002431220, 0.000002266531, 0.000002113013, 0.000001969943,
0.000001836600, 0.000001712230, 0.000001596228, 0.000001488090, 0.000001387314,
0.000001293400, 0.000001205820, 0.000001124143, 0.000001048009, 0.0000009770578,
0.0000009109300, 0.0000008492513, 0.0000007917212, 0.0000007380904, 0.0000006881098,
0.0000006415300, 0.0000005980895, 0.0000005575746, 0.0000005198080, 0.0000004846123,
0.0000004518100
};
private static final double[] CIE_Z = {
// CIE Z function values
0.0006061000, 0.0006808792, 0.0007651456, 0.0008600124, 0.0009665928,
0.001086000, 0.001220586, 0.001372729, 0.001543579, 0.001734286,
0.001946000, 0.002177777, 0.002435809, 0.002731953, 0.003078064,
0.003486000, 0.003975227, 0.004540880, 0.005158320, 0.005802907,
0.006450001, 0.007083216, 0.007745488, 0.008501152, 0.009414544,
0.01054999, 0.01196580, 0.01365587, 0.01558805, 0.01773015,
0.02005001, 0.02251136, 0.02520288, 0.02827972, 0.03189704,
0.03621000, 0.04143771, 0.04750372, 0.05411988, 0.06099803,
0.06785001, 0.07448632, 0.08136156, 0.08915364, 0.09854048,
0.1102000, 0.1246133, 0.1417017, 0.1613035, 0.1832568,
0.2074000, 0.2336921, 0.2626114, 0.2947746, 0.3307985,
0.3713000, 0.4162091, 0.4654642, 0.5196948, 0.5795303,
0.6456000, 0.7184838, 0.7967133, 0.8778459, 0.9594390,
1.0390501, 1.1153673, 1.1884971, 1.2581233, 1.3239296,
1.3856000, 1.4426352, 1.4948035, 1.5421903, 1.5848807,
1.6229600, 1.6564048, 1.6852959, 1.7098745, 1.7303821,
1.7470600, 1.7600446, 1.7696233, 1.7762637, 1.7804334,
1.7826000, 1.7829682, 1.7816998, 1.7791982, 1.7758671,
1.7721100, 1.7682589, 1.7640390, 1.7589438, 1.7524663,
1.7441000, 1.7335595, 1.7208581, 1.7059369, 1.6887372,
1.6692000, 1.6475287, 1.6234127, 1.5960223, 1.5645280,
1.5281000, 1.4861114, 1.4395215, 1.3898799, 1.3387362,
1.2876400, 1.2374223, 1.1878243, 1.1387611, 1.0901480,
1.0419000, 0.9941976, 0.9473473, 0.9014531, 0.8566193,
0.8129501, 0.7705173, 0.7294448, 0.6899136, 0.6521049,
0.6162000, 0.5823286, 0.5504162, 0.5203376, 0.4919673,
0.4651800, 0.4399246, 0.4161836, 0.3938822, 0.3729459,
0.3533000, 0.3348578, 0.3175521, 0.3013375, 0.2861686,
0.2720000, 0.2588171, 0.2464838, 0.2347718, 0.2234533,
0.2123000, 0.2011692, 0.1901196, 0.1792254, 0.1685608,
0.1582000, 0.1481383, 0.1383758, 0.1289942, 0.1200751,
0.1117000, 0.1039048, 0.09666748, 0.08998272, 0.08384531,
0.07824999, 0.07320899, 0.06867816, 0.06456784, 0.06078835,
0.05725001, 0.05390435, 0.05074664, 0.04775276, 0.04489859,
0.04216000, 0.03950728, 0.03693564, 0.03445836, 0.03208872,
0.02984000, 0.02771181, 0.02569444, 0.02378716, 0.02198925,
0.02030000, 0.01871805, 0.01724036, 0.01586364, 0.01458461,
0.01340000, 0.01230723, 0.01130188, 0.01037792, 0.009529306,
0.008749999, 0.008035200, 0.007381600, 0.006785400, 0.006242800,
0.005749999, 0.005303600, 0.004899800, 0.004534200, 0.004202400,
0.003900000, 0.003623200, 0.003370600, 0.003141400, 0.002934800,
0.002749999, 0.002585200, 0.002438600, 0.002309400, 0.002196800,
0.002100000, 0.002017733, 0.001948200, 0.001889800, 0.001840933,
0.001800000, 0.001766267, 0.001737800, 0.001711200, 0.001683067,
0.001650001, 0.001610133, 0.001564400, 0.001513600, 0.001458533,
0.001400000, 0.001336667, 0.001270000, 0.001205000, 0.001146667,
0.001100000, 0.001068800, 0.001049400, 0.001035600, 0.001021200,
0.001000000, 0.0009686400, 0.0009299200, 0.0008868800, 0.0008425600,
0.0008000000, 0.0007609600, 0.0007236800, 0.0006859200, 0.0006454400,
0.0006000000, 0.0005478667, 0.0004916000, 0.0004354000, 0.0003834667,
0.0003400000, 0.0003072533, 0.0002831600, 0.0002654400, 0.0002518133,
0.0002400000, 0.0002295467, 0.0002206400, 0.0002119600, 0.0002021867,
0.0001900000, 0.0001742133, 0.0001556400, 0.0001359600, 0.0001168533,
0.0001000000, 0.00008613333, 0.00007460000, 0.00006500000, 0.00005693333,
0.00004999999, 0.00004416000, 0.00003948000, 0.00003572000, 0.00003264000,
0.00003000000, 0.00002765333, 0.00002556000, 0.00002364000, 0.00002181333,
0.00002000000, 0.00001813333, 0.00001620000, 0.00001420000, 0.00001213333,
0.00001000000, 0.000007733333, 0.000005400000, 0.000003200000, 0.000001333333,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000,
0.000000000000
};
}
}

@ -0,0 +1,41 @@
package eu.jonahbauer.raytracing.render.spectral.spectrum;
import eu.jonahbauer.raytracing.render.spectral.colors.ColorSpace;
import eu.jonahbauer.raytracing.render.spectral.colors.ColorXYZ;
import eu.jonahbauer.raytracing.render.spectral.SampledSpectrum;
import eu.jonahbauer.raytracing.render.spectral.SampledWavelengths;
import eu.jonahbauer.raytracing.render.texture.Color;
import org.jetbrains.annotations.NotNull;
public interface Spectrum {
int LAMBDA_MIN = 360;
int LAMBDA_MAX = 830;
/**
* {@return the maximum value of <code>this</code> spectrum over the range of wavelengths}
*/
double max();
/**
* {@return the value of <code>this</code> spectrum at a given wavelength}
* @param lambda the wavelength in nanometers
*/
double get(double lambda);
default @NotNull SampledSpectrum sample(@NotNull SampledWavelengths lambdas) {
return new SampledSpectrum(lambdas, this);
}
default @NotNull ColorXYZ toXYZ() {
return new ColorXYZ(
Util.innerProduct(Spectra.X, this) / ColorXYZ.CIE_Y_INTEGRAL,
Util.innerProduct(Spectra.Y, this) / ColorXYZ.CIE_Y_INTEGRAL,
Util.innerProduct(Spectra.Z, this) / ColorXYZ.CIE_Y_INTEGRAL
);
}
default @NotNull Color toRGB(@NotNull ColorSpace cs) {
return cs.toRGB(toXYZ());
}
}

@ -0,0 +1,17 @@
package eu.jonahbauer.raytracing.render.spectral.spectrum;
import org.jetbrains.annotations.NotNull;
final class Util {
private Util() {
throw new UnsupportedOperationException();
}
public static double innerProduct(@NotNull Spectrum f, @NotNull Spectrum g) {
var integral = 0.0;
for (var lambda = Spectrum.LAMBDA_MIN; lambda <= Spectrum.LAMBDA_MAX; lambda++) {
integral += f.get(lambda) * g.get(lambda);
}
return integral;
}
}

@ -5,6 +5,7 @@ import eu.jonahbauer.raytracing.math.Vec3;
import eu.jonahbauer.raytracing.scene.SkyBox; import eu.jonahbauer.raytracing.scene.SkyBox;
import org.jetbrains.annotations.NotNull; import org.jetbrains.annotations.NotNull;
import java.util.Objects;
import java.util.Random; import java.util.Random;
import static eu.jonahbauer.raytracing.Main.DEBUG; import static eu.jonahbauer.raytracing.Main.DEBUG;
@ -20,9 +21,9 @@ public record Color(double r, double g, double b) implements Texture, SkyBox {
if (t < 0) return a; if (t < 0) return a;
if (t > 1) return b; if (t > 1) return b;
return new Color( return new Color(
(1 - t) * a.r + t * b.r, Math.fma(t, b.r, Math.fma(-t, a.r, a.r)),
(1 - t) * a.g + t * b.g, Math.fma(t, b.g, Math.fma(-t, a.g, a.g)),
(1 - t) * a.b + t * b.b Math.fma(t, b.b, Math.fma(-t, a.b, a.b))
); );
} }
@ -86,6 +87,10 @@ public record Color(double r, double g, double b) implements Texture, SkyBox {
this(red / 255f, green / 255f, blue / 255f); this(red / 255f, green / 255f, blue / 255f);
} }
public Color(@NotNull Vec3 vec) {
this(vec.x(), vec.y(), vec.z());
}
public Color { public Color {
if (DEBUG) { if (DEBUG) {
if (!Double.isFinite(r) || !Double.isFinite(g) || !Double.isFinite(b)) { if (!Double.isFinite(r) || !Double.isFinite(g) || !Double.isFinite(b)) {
@ -109,6 +114,15 @@ public record Color(double r, double g, double b) implements Texture, SkyBox {
return toInt(b); return toInt(b);
} }
public double component(int i) {
return switch (i) {
case 0 -> r;
case 1 -> g;
case 2 -> b;
default -> throw new IndexOutOfBoundsException(i);
};
}
@Override @Override
public @NotNull Color get(double u, double v, @NotNull Vec3 p) { public @NotNull Color get(double u, double v, @NotNull Vec3 p) {
return this; return this;
@ -124,6 +138,10 @@ public record Color(double r, double g, double b) implements Texture, SkyBox {
return false; return false;
} }
public @NotNull Vec3 toVec3() {
return new Vec3(r, g, b);
}
private static int toInt(double value) { private static int toInt(double value) {
return Math.clamp((int) (255.99 * value), 0, 255); return Math.clamp((int) (255.99 * value), 0, 255);
} }

@ -0,0 +1,531 @@
300,0.01922
301,0.222348
302,0.425476
303,0.628604
304,0.831732
305,1.03486
306,1.23799
307,1.44112
308,1.64424
309,1.84737
310,2.0505
311,2.62329
312,3.19608
313,3.76887
314,4.34166
315,4.91445
316,5.48724
317,6.06003
318,6.63282
319,7.20561
320,7.7784
321,8.47531
322,9.17222
323,9.86913
324,10.566
325,11.263
326,11.9599
327,12.6568
328,13.3537
329,14.0506
330,14.7475
331,15.0676
332,15.3876
333,15.7076
334,16.0277
335,16.3478
336,16.6678
337,16.9878
338,17.3079
339,17.628
340,17.948
341,18.2542
342,18.5603
343,18.8665
344,19.1727
345,19.4788
346,19.785
347,20.0912
348,20.3974
349,20.7035
350,21.0097
351,21.3029
352,21.5961
353,21.8894
354,22.1826
355,22.4758
356,22.769
357,23.0622
358,23.3555
359,23.6487
360,23.9419
361,24.2438
362,24.5457
363,24.8475
364,25.1494
365,25.4513
366,25.7532
367,26.0551
368,26.3569
369,26.6588
370,26.9607
371,26.7134
372,26.4661
373,26.2187
374,25.9714
375,25.7241
376,25.4768
377,25.2295
378,24.9821
379,24.7348
380,24.4875
381,25.0258
382,25.5641
383,26.1024
384,26.6407
385,27.179
386,27.7174
387,28.2557
388,28.794
389,29.3323
390,29.8706
391,31.8144
392,33.7581
393,35.7018
394,37.6456
395,39.5894
396,41.5331
397,43.4768
398,45.4206
399,47.3644
400,49.3081
401,50.0286
402,50.749
403,51.4695
404,52.19
405,52.9104
406,53.6309
407,54.3514
408,55.0719
409,55.7923
410,56.5128
411,56.8649
412,57.217
413,57.5691
414,57.9212
415,58.2733
416,58.6254
417,58.9775
418,59.3296
419,59.6817
420,60.0338
421,59.8122
422,59.5905
423,59.3689
424,59.1473
425,58.9256
426,58.704
427,58.4824
428,58.2608
429,58.0391
430,57.8175
431,59.5182
432,61.219
433,62.9197
434,64.6205
435,66.3212
436,68.0219
437,69.7227
438,71.4234
439,73.1242
440,74.8249
441,76.0671
442,77.3094
443,78.5516
444,79.7938
445,81.036
446,82.2783
447,83.5205
448,84.7627
449,86.005
450,87.2472
451,87.5837
452,87.9202
453,88.2567
454,88.5932
455,88.9297
456,89.2662
457,89.6027
458,89.9392
459,90.2757
460,90.6122
461,90.6878
462,90.7634
463,90.839
464,90.9146
465,90.9902
466,91.0657
467,91.1413
468,91.2169
469,91.2925
470,91.3681
471,91.7421
472,92.1162
473,92.4902
474,92.8643
475,93.2383
476,93.6123
477,93.9864
478,94.3604
479,94.7345
480,95.1085
481,94.7939
482,94.4793
483,94.1648
484,93.8502
485,93.5356
486,93.221
487,92.9064
488,92.5919
489,92.2773
490,91.9627
491,92.3388
492,92.7149
493,93.091
494,93.4671
495,93.8432
496,94.2193
497,94.5954
498,94.9715
499,95.3476
500,95.7237
501,95.8127
502,95.9016
503,95.9906
504,96.0795
505,96.1685
506,96.2575
507,96.3464
508,96.4354
509,96.5243
510,96.6133
511,96.6649
512,96.7164
513,96.768
514,96.8196
515,96.8712
516,96.9227
517,96.9743
518,97.0259
519,97.0774
520,97.129
521,97.626
522,98.123
523,98.62
524,99.117
525,99.614
526,100.111
527,100.608
528,101.105
529,101.602
530,102.099
531,101.965
532,101.83
533,101.696
534,101.561
535,101.427
536,101.292
537,101.158
538,101.024
539,100.889
540,100.755
541,100.911
542,101.067
543,101.223
544,101.38
545,101.536
546,101.692
547,101.848
548,102.005
549,102.161
550,102.317
551,102.085
552,101.854
553,101.622
554,101.39
555,101.158
556,100.927
557,100.695
558,100.463
559,100.232
560,100
561,99.7735
562,99.547
563,99.3205
564,99.094
565,98.8675
566,98.641
567,98.4145
568,98.188
569,97.9615
570,97.735
571,97.8533
572,97.9716
573,98.0899
574,98.2082
575,98.3265
576,98.4448
577,98.5631
578,98.6814
579,98.7997
580,98.918
581,98.3761
582,97.8342
583,97.2922
584,96.7503
585,96.2084
586,95.6665
587,95.1246
588,94.5826
589,94.0407
590,93.4988
591,93.9177
592,94.3366
593,94.7555
594,95.1744
595,95.5933
596,96.0122
597,96.4311
598,96.85
599,97.2689
600,97.6878
601,97.8459
602,98.0041
603,98.1622
604,98.3203
605,98.4784
606,98.6366
607,98.7947
608,98.9528
609,99.111
610,99.2691
611,99.2463
612,99.2236
613,99.2008
614,99.1781
615,99.1553
616,99.1325
617,99.1098
618,99.087
619,99.0643
620,99.0415
621,98.7095
622,98.3776
623,98.0456
624,97.7136
625,97.3816
626,97.0497
627,96.7177
628,96.3857
629,96.0538
630,95.7218
631,96.0353
632,96.3489
633,96.6624
634,96.976
635,97.2895
636,97.603
637,97.9166
638,98.2301
639,98.5437
640,98.8572
641,98.5382
642,98.2192
643,97.9002
644,97.5812
645,97.2622
646,96.9432
647,96.6242
648,96.3052
649,95.9862
650,95.6672
651,95.9195
652,96.1717
653,96.424
654,96.6762
655,96.9285
656,97.1808
657,97.433
658,97.6853
659,97.9375
660,98.1898
661,98.6712
662,99.1525
663,99.6339
664,100.115
665,100.597
666,101.078
667,101.559
668,102.041
669,102.522
670,103.003
671,102.616
672,102.229
673,101.842
674,101.455
675,101.068
676,100.681
677,100.294
678,99.9071
679,99.52
680,99.133
681,97.9578
682,96.7826
683,95.6074
684,94.4322
685,93.257
686,92.0817
687,90.9065
688,89.7313
689,88.5561
690,87.3809
691,87.8032
692,88.2254
693,88.6477
694,89.0699
695,89.4922
696,89.9145
697,90.3367
698,90.759
699,91.1812
700,91.6035
701,91.732
702,91.8605
703,91.989
704,92.1175
705,92.246
706,92.3746
707,92.5031
708,92.6316
709,92.7601
710,92.8886
711,91.2852
712,89.6818
713,88.0783
714,86.4749
715,84.8715
716,83.2681
717,81.6647
718,80.0612
719,78.4578
720,76.8544
721,77.8201
722,78.7858
723,79.7514
724,80.7171
725,81.6828
726,82.6485
727,83.6142
728,84.5798
729,85.5455
730,86.5112
731,87.1181
732,87.7249
733,88.3318
734,88.9386
735,89.5455
736,90.1524
737,90.7592
738,91.3661
739,91.9729
740,92.5798
741,91.1448
742,89.7098
743,88.2748
744,86.8398
745,85.4048
746,83.9699
747,82.5349
748,81.0999
749,79.6649
750,78.2299
751,76.1761
752,74.1223
753,72.0685
754,70.0147
755,67.9608
756,65.907
757,63.8532
758,61.7994
759,59.7456
760,57.6918
761,60.2149
762,62.738
763,65.2612
764,67.7843
765,70.3074
766,72.8305
767,75.3536
768,77.8768
769,80.3999
770,82.923
771,82.4581
772,81.9932
773,81.5283
774,81.0634
775,80.5985
776,80.1336
777,79.6687
778,79.2038
779,78.7389
780,78.274
781,78.402
782,78.5301
783,78.6581
784,78.7862
785,78.9142
786,79.0422
787,79.1703
788,79.2983
789,79.4264
790,79.5544
791,78.9391
792,78.3238
793,77.7085
794,77.0932
795,76.478
796,75.8627
797,75.2474
798,74.6321
799,74.0168
800,73.4015
801,72.4534
802,71.5052
803,70.5571
804,69.609
805,68.6608
806,67.7127
807,66.7646
808,65.8165
809,64.8683
810,63.9202
811,64.6059
812,65.2916
813,65.9772
814,66.6629
815,67.3486
816,68.0343
817,68.72
818,69.4056
819,70.0913
820,70.777
821,71.1435
822,71.5099
823,71.8764
824,72.2429
825,72.6094
826,72.9758
827,73.3423
828,73.7088
829,74.0752
830,74.4417
1 300 0.01922
2 301 0.222348
3 302 0.425476
4 303 0.628604
5 304 0.831732
6 305 1.03486
7 306 1.23799
8 307 1.44112
9 308 1.64424
10 309 1.84737
11 310 2.0505
12 311 2.62329
13 312 3.19608
14 313 3.76887
15 314 4.34166
16 315 4.91445
17 316 5.48724
18 317 6.06003
19 318 6.63282
20 319 7.20561
21 320 7.7784
22 321 8.47531
23 322 9.17222
24 323 9.86913
25 324 10.566
26 325 11.263
27 326 11.9599
28 327 12.6568
29 328 13.3537
30 329 14.0506
31 330 14.7475
32 331 15.0676
33 332 15.3876
34 333 15.7076
35 334 16.0277
36 335 16.3478
37 336 16.6678
38 337 16.9878
39 338 17.3079
40 339 17.628
41 340 17.948
42 341 18.2542
43 342 18.5603
44 343 18.8665
45 344 19.1727
46 345 19.4788
47 346 19.785
48 347 20.0912
49 348 20.3974
50 349 20.7035
51 350 21.0097
52 351 21.3029
53 352 21.5961
54 353 21.8894
55 354 22.1826
56 355 22.4758
57 356 22.769
58 357 23.0622
59 358 23.3555
60 359 23.6487
61 360 23.9419
62 361 24.2438
63 362 24.5457
64 363 24.8475
65 364 25.1494
66 365 25.4513
67 366 25.7532
68 367 26.0551
69 368 26.3569
70 369 26.6588
71 370 26.9607
72 371 26.7134
73 372 26.4661
74 373 26.2187
75 374 25.9714
76 375 25.7241
77 376 25.4768
78 377 25.2295
79 378 24.9821
80 379 24.7348
81 380 24.4875
82 381 25.0258
83 382 25.5641
84 383 26.1024
85 384 26.6407
86 385 27.179
87 386 27.7174
88 387 28.2557
89 388 28.794
90 389 29.3323
91 390 29.8706
92 391 31.8144
93 392 33.7581
94 393 35.7018
95 394 37.6456
96 395 39.5894
97 396 41.5331
98 397 43.4768
99 398 45.4206
100 399 47.3644
101 400 49.3081
102 401 50.0286
103 402 50.749
104 403 51.4695
105 404 52.19
106 405 52.9104
107 406 53.6309
108 407 54.3514
109 408 55.0719
110 409 55.7923
111 410 56.5128
112 411 56.8649
113 412 57.217
114 413 57.5691
115 414 57.9212
116 415 58.2733
117 416 58.6254
118 417 58.9775
119 418 59.3296
120 419 59.6817
121 420 60.0338
122 421 59.8122
123 422 59.5905
124 423 59.3689
125 424 59.1473
126 425 58.9256
127 426 58.704
128 427 58.4824
129 428 58.2608
130 429 58.0391
131 430 57.8175
132 431 59.5182
133 432 61.219
134 433 62.9197
135 434 64.6205
136 435 66.3212
137 436 68.0219
138 437 69.7227
139 438 71.4234
140 439 73.1242
141 440 74.8249
142 441 76.0671
143 442 77.3094
144 443 78.5516
145 444 79.7938
146 445 81.036
147 446 82.2783
148 447 83.5205
149 448 84.7627
150 449 86.005
151 450 87.2472
152 451 87.5837
153 452 87.9202
154 453 88.2567
155 454 88.5932
156 455 88.9297
157 456 89.2662
158 457 89.6027
159 458 89.9392
160 459 90.2757
161 460 90.6122
162 461 90.6878
163 462 90.7634
164 463 90.839
165 464 90.9146
166 465 90.9902
167 466 91.0657
168 467 91.1413
169 468 91.2169
170 469 91.2925
171 470 91.3681
172 471 91.7421
173 472 92.1162
174 473 92.4902
175 474 92.8643
176 475 93.2383
177 476 93.6123
178 477 93.9864
179 478 94.3604
180 479 94.7345
181 480 95.1085
182 481 94.7939
183 482 94.4793
184 483 94.1648
185 484 93.8502
186 485 93.5356
187 486 93.221
188 487 92.9064
189 488 92.5919
190 489 92.2773
191 490 91.9627
192 491 92.3388
193 492 92.7149
194 493 93.091
195 494 93.4671
196 495 93.8432
197 496 94.2193
198 497 94.5954
199 498 94.9715
200 499 95.3476
201 500 95.7237
202 501 95.8127
203 502 95.9016
204 503 95.9906
205 504 96.0795
206 505 96.1685
207 506 96.2575
208 507 96.3464
209 508 96.4354
210 509 96.5243
211 510 96.6133
212 511 96.6649
213 512 96.7164
214 513 96.768
215 514 96.8196
216 515 96.8712
217 516 96.9227
218 517 96.9743
219 518 97.0259
220 519 97.0774
221 520 97.129
222 521 97.626
223 522 98.123
224 523 98.62
225 524 99.117
226 525 99.614
227 526 100.111
228 527 100.608
229 528 101.105
230 529 101.602
231 530 102.099
232 531 101.965
233 532 101.83
234 533 101.696
235 534 101.561
236 535 101.427
237 536 101.292
238 537 101.158
239 538 101.024
240 539 100.889
241 540 100.755
242 541 100.911
243 542 101.067
244 543 101.223
245 544 101.38
246 545 101.536
247 546 101.692
248 547 101.848
249 548 102.005
250 549 102.161
251 550 102.317
252 551 102.085
253 552 101.854
254 553 101.622
255 554 101.39
256 555 101.158
257 556 100.927
258 557 100.695
259 558 100.463
260 559 100.232
261 560 100
262 561 99.7735
263 562 99.547
264 563 99.3205
265 564 99.094
266 565 98.8675
267 566 98.641
268 567 98.4145
269 568 98.188
270 569 97.9615
271 570 97.735
272 571 97.8533
273 572 97.9716
274 573 98.0899
275 574 98.2082
276 575 98.3265
277 576 98.4448
278 577 98.5631
279 578 98.6814
280 579 98.7997
281 580 98.918
282 581 98.3761
283 582 97.8342
284 583 97.2922
285 584 96.7503
286 585 96.2084
287 586 95.6665
288 587 95.1246
289 588 94.5826
290 589 94.0407
291 590 93.4988
292 591 93.9177
293 592 94.3366
294 593 94.7555
295 594 95.1744
296 595 95.5933
297 596 96.0122
298 597 96.4311
299 598 96.85
300 599 97.2689
301 600 97.6878
302 601 97.8459
303 602 98.0041
304 603 98.1622
305 604 98.3203
306 605 98.4784
307 606 98.6366
308 607 98.7947
309 608 98.9528
310 609 99.111
311 610 99.2691
312 611 99.2463
313 612 99.2236
314 613 99.2008
315 614 99.1781
316 615 99.1553
317 616 99.1325
318 617 99.1098
319 618 99.087
320 619 99.0643
321 620 99.0415
322 621 98.7095
323 622 98.3776
324 623 98.0456
325 624 97.7136
326 625 97.3816
327 626 97.0497
328 627 96.7177
329 628 96.3857
330 629 96.0538
331 630 95.7218
332 631 96.0353
333 632 96.3489
334 633 96.6624
335 634 96.976
336 635 97.2895
337 636 97.603
338 637 97.9166
339 638 98.2301
340 639 98.5437
341 640 98.8572
342 641 98.5382
343 642 98.2192
344 643 97.9002
345 644 97.5812
346 645 97.2622
347 646 96.9432
348 647 96.6242
349 648 96.3052
350 649 95.9862
351 650 95.6672
352 651 95.9195
353 652 96.1717
354 653 96.424
355 654 96.6762
356 655 96.9285
357 656 97.1808
358 657 97.433
359 658 97.6853
360 659 97.9375
361 660 98.1898
362 661 98.6712
363 662 99.1525
364 663 99.6339
365 664 100.115
366 665 100.597
367 666 101.078
368 667 101.559
369 668 102.041
370 669 102.522
371 670 103.003
372 671 102.616
373 672 102.229
374 673 101.842
375 674 101.455
376 675 101.068
377 676 100.681
378 677 100.294
379 678 99.9071
380 679 99.52
381 680 99.133
382 681 97.9578
383 682 96.7826
384 683 95.6074
385 684 94.4322
386 685 93.257
387 686 92.0817
388 687 90.9065
389 688 89.7313
390 689 88.5561
391 690 87.3809
392 691 87.8032
393 692 88.2254
394 693 88.6477
395 694 89.0699
396 695 89.4922
397 696 89.9145
398 697 90.3367
399 698 90.759
400 699 91.1812
401 700 91.6035
402 701 91.732
403 702 91.8605
404 703 91.989
405 704 92.1175
406 705 92.246
407 706 92.3746
408 707 92.5031
409 708 92.6316
410 709 92.7601
411 710 92.8886
412 711 91.2852
413 712 89.6818
414 713 88.0783
415 714 86.4749
416 715 84.8715
417 716 83.2681
418 717 81.6647
419 718 80.0612
420 719 78.4578
421 720 76.8544
422 721 77.8201
423 722 78.7858
424 723 79.7514
425 724 80.7171
426 725 81.6828
427 726 82.6485
428 727 83.6142
429 728 84.5798
430 729 85.5455
431 730 86.5112
432 731 87.1181
433 732 87.7249
434 733 88.3318
435 734 88.9386
436 735 89.5455
437 736 90.1524
438 737 90.7592
439 738 91.3661
440 739 91.9729
441 740 92.5798
442 741 91.1448
443 742 89.7098
444 743 88.2748
445 744 86.8398
446 745 85.4048
447 746 83.9699
448 747 82.5349
449 748 81.0999
450 749 79.6649
451 750 78.2299
452 751 76.1761
453 752 74.1223
454 753 72.0685
455 754 70.0147
456 755 67.9608
457 756 65.907
458 757 63.8532
459 758 61.7994
460 759 59.7456
461 760 57.6918
462 761 60.2149
463 762 62.738
464 763 65.2612
465 764 67.7843
466 765 70.3074
467 766 72.8305
468 767 75.3536
469 768 77.8768
470 769 80.3999
471 770 82.923
472 771 82.4581
473 772 81.9932
474 773 81.5283
475 774 81.0634
476 775 80.5985
477 776 80.1336
478 777 79.6687
479 778 79.2038
480 779 78.7389
481 780 78.274
482 781 78.402
483 782 78.5301
484 783 78.6581
485 784 78.7862
486 785 78.9142
487 786 79.0422
488 787 79.1703
489 788 79.2983
490 789 79.4264
491 790 79.5544
492 791 78.9391
493 792 78.3238
494 793 77.7085
495 794 77.0932
496 795 76.478
497 796 75.8627
498 797 75.2474
499 798 74.6321
500 799 74.0168
501 800 73.4015
502 801 72.4534
503 802 71.5052
504 803 70.5571
505 804 69.609
506 805 68.6608
507 806 67.7127
508 807 66.7646
509 808 65.8165
510 809 64.8683
511 810 63.9202
512 811 64.6059
513 812 65.2916
514 813 65.9772
515 814 66.6629
516 815 67.3486
517 816 68.0343
518 817 68.72
519 818 69.4056
520 819 70.0913
521 820 70.777
522 821 71.1435
523 822 71.5099
524 823 71.8764
525 824 72.2429
526 825 72.6094
527 826 72.9758
528 827 73.3423
529 828 73.7088
530 829 74.0752
531 830 74.4417

@ -0,0 +1,531 @@
300,0.0341
301,0.36014
302,0.68618
303,1.01222
304,1.33826
305,1.6643
306,1.99034
307,2.31638
308,2.64242
309,2.96846
310,3.2945
311,4.98865
312,6.6828
313,8.37695
314,10.0711
315,11.7652
316,13.4594
317,15.1535
318,16.8477
319,18.5418
320,20.236
321,21.9177
322,23.5995
323,25.2812
324,26.963
325,28.6447
326,30.3265
327,32.0082
328,33.69
329,35.3717
330,37.0535
331,37.343
332,37.6326
333,37.9221
334,38.2116
335,38.5011
336,38.7907
337,39.0802
338,39.3697
339,39.6593
340,39.9488
341,40.4451
342,40.9414
343,41.4377
344,41.934
345,42.4302
346,42.9265
347,43.4228
348,43.9191
349,44.4154
350,44.9117
351,45.0844
352,45.257
353,45.4297
354,45.6023
355,45.775
356,45.9477
357,46.1203
358,46.293
359,46.4656
360,46.6383
361,47.1834
362,47.7285
363,48.2735
364,48.8186
365,49.3637
366,49.9088
367,50.4539
368,50.9989
369,51.544
370,52.0891
371,51.8777
372,51.6664
373,51.455
374,51.2437
375,51.0323
376,50.8209
377,50.6096
378,50.3982
379,50.1869
380,49.9755
381,50.4428
382,50.91
383,51.3773
384,51.8446
385,52.3118
386,52.7791
387,53.2464
388,53.7137
389,54.1809
390,54.6482
391,57.4589
392,60.2695
393,63.0802
394,65.8909
395,68.7015
396,71.5122
397,74.3229
398,77.1336
399,79.9442
400,82.7549
401,83.628
402,84.5011
403,85.3742
404,86.2473
405,87.1204
406,87.9936
407,88.8667
408,89.7398
409,90.6129
410,91.486
411,91.6806
412,91.8752
413,92.0697
414,92.2643
415,92.4589
416,92.6535
417,92.8481
418,93.0426
419,93.2372
420,93.4318
421,92.7568
422,92.0819
423,91.4069
424,90.732
425,90.057
426,89.3821
427,88.7071
428,88.0322
429,87.3572
430,86.6823
431,88.5006
432,90.3188
433,92.1371
434,93.9554
435,95.7736
436,97.5919
437,99.4102
438,101.228
439,103.047
440,104.865
441,106.079
442,107.294
443,108.508
444,109.722
445,110.936
446,112.151
447,113.365
448,114.579
449,115.794
450,117.008
451,117.088
452,117.169
453,117.249
454,117.33
455,117.41
456,117.49
457,117.571
458,117.651
459,117.732
460,117.812
461,117.517
462,117.222
463,116.927
464,116.632
465,116.336
466,116.041
467,115.746
468,115.451
469,115.156
470,114.861
471,114.967
472,115.073
473,115.18
474,115.286
475,115.392
476,115.498
477,115.604
478,115.711
479,115.817
480,115.923
481,115.212
482,114.501
483,113.789
484,113.078
485,112.367
486,111.656
487,110.945
488,110.233
489,109.522
490,108.811
491,108.865
492,108.92
493,108.974
494,109.028
495,109.082
496,109.137
497,109.191
498,109.245
499,109.3
500,109.354
501,109.199
502,109.044
503,108.888
504,108.733
505,108.578
506,108.423
507,108.268
508,108.112
509,107.957
510,107.802
511,107.501
512,107.2
513,106.898
514,106.597
515,106.296
516,105.995
517,105.694
518,105.392
519,105.091
520,104.79
521,105.08
522,105.37
523,105.66
524,105.95
525,106.239
526,106.529
527,106.819
528,107.109
529,107.399
530,107.689
531,107.361
532,107.032
533,106.704
534,106.375
535,106.047
536,105.719
537,105.39
538,105.062
539,104.733
540,104.405
541,104.369
542,104.333
543,104.297
544,104.261
545,104.225
546,104.19
547,104.154
548,104.118
549,104.082
550,104.046
551,103.641
552,103.237
553,102.832
554,102.428
555,102.023
556,101.618
557,101.214
558,100.809
559,100.405
560,100
561,99.6334
562,99.2668
563,98.9003
564,98.5337
565,98.1671
566,97.8005
567,97.4339
568,97.0674
569,96.7008
570,96.3342
571,96.2796
572,96.225
573,96.1703
574,96.1157
575,96.0611
576,96.0065
577,95.9519
578,95.8972
579,95.8426
580,95.788
581,95.0778
582,94.3675
583,93.6573
584,92.947
585,92.2368
586,91.5266
587,90.8163
588,90.1061
589,89.3958
590,88.6856
591,88.8177
592,88.9497
593,89.0818
594,89.2138
595,89.3459
596,89.478
597,89.61
598,89.7421
599,89.8741
600,90.0062
601,89.9655
602,89.9248
603,89.8841
604,89.8434
605,89.8026
606,89.7619
607,89.7212
608,89.6805
609,89.6398
610,89.5991
611,89.4091
612,89.219
613,89.029
614,88.8389
615,88.6489
616,88.4589
617,88.2688
618,88.0788
619,87.8887
620,87.6987
621,87.2577
622,86.8167
623,86.3757
624,85.9347
625,85.4936
626,85.0526
627,84.6116
628,84.1706
629,83.7296
630,83.2886
631,83.3297
632,83.3707
633,83.4118
634,83.4528
635,83.4939
636,83.535
637,83.576
638,83.6171
639,83.6581
640,83.6992
641,83.332
642,82.9647
643,82.5975
644,82.2302
645,81.863
646,81.4958
647,81.1285
648,80.7613
649,80.394
650,80.0268
651,80.0456
652,80.0644
653,80.0831
654,80.1019
655,80.1207
656,80.1395
657,80.1583
658,80.177
659,80.1958
660,80.2146
661,80.4209
662,80.6272
663,80.8336
664,81.0399
665,81.2462
666,81.4525
667,81.6588
668,81.8652
669,82.0715
670,82.2778
671,81.8784
672,81.4791
673,81.0797
674,80.6804
675,80.281
676,79.8816
677,79.4823
678,79.0829
679,78.6836
680,78.2842
681,77.4279
682,76.5716
683,75.7153
684,74.859
685,74.0027
686,73.1465
687,72.2902
688,71.4339
689,70.5776
690,69.7213
691,69.9101
692,70.0989
693,70.2876
694,70.4764
695,70.6652
696,70.854
697,71.0428
698,71.2315
699,71.4203
700,71.6091
701,71.8831
702,72.1571
703,72.4311
704,72.7051
705,72.979
706,73.253
707,73.527
708,73.801
709,74.075
710,74.349
711,73.0745
712,71.8
713,70.5255
714,69.251
715,67.9765
716,66.702
717,65.4275
718,64.153
719,62.8785
720,61.604
721,62.4322
722,63.2603
723,64.0885
724,64.9166
725,65.7448
726,66.573
727,67.4011
728,68.2293
729,69.0574
730,69.8856
731,70.4057
732,70.9259
733,71.446
734,71.9662
735,72.4863
736,73.0064
737,73.5266
738,74.0467
739,74.5669
740,75.087
741,73.9376
742,72.7881
743,71.6387
744,70.4893
745,69.3398
746,68.1904
747,67.041
748,65.8916
749,64.7421
750,63.5927
751,61.8752
752,60.1578
753,58.4403
754,56.7229
755,55.0054
756,53.288
757,51.5705
758,49.8531
759,48.1356
760,46.4182
761,48.4569
762,50.4956
763,52.5344
764,54.5731
765,56.6118
766,58.6505
767,60.6892
768,62.728
769,64.7667
770,66.8054
771,66.4631
772,66.1209
773,65.7786
774,65.4364
775,65.0941
776,64.7518
777,64.4096
778,64.0673
779,63.7251
780,63.3828
781,63.4749
782,63.567
783,63.6592
784,63.7513
785,63.8434
786,63.9355
787,64.0276
788,64.1198
789,64.2119
790,64.304
791,63.8188
792,63.3336
793,62.8484
794,62.3632
795,61.8779
796,61.3927
797,60.9075
798,60.4223
799,59.9371
800,59.4519
801,58.7026
802,57.9533
803,57.204
804,56.4547
805,55.7054
806,54.9562
807,54.2069
808,53.4576
809,52.7083
810,51.959
811,52.5072
812,53.0553
813,53.6035
814,54.1516
815,54.6998
816,55.248
817,55.7961
818,56.3443
819,56.8924
820,57.4406
821,57.7278
822,58.015
823,58.3022
824,58.5894
825,58.8765
826,59.1637
827,59.4509
828,59.7381
829,60.0253
830,60.3125
1 300 0.0341
2 301 0.36014
3 302 0.68618
4 303 1.01222
5 304 1.33826
6 305 1.6643
7 306 1.99034
8 307 2.31638
9 308 2.64242
10 309 2.96846
11 310 3.2945
12 311 4.98865
13 312 6.6828
14 313 8.37695
15 314 10.0711
16 315 11.7652
17 316 13.4594
18 317 15.1535
19 318 16.8477
20 319 18.5418
21 320 20.236
22 321 21.9177
23 322 23.5995
24 323 25.2812
25 324 26.963
26 325 28.6447
27 326 30.3265
28 327 32.0082
29 328 33.69
30 329 35.3717
31 330 37.0535
32 331 37.343
33 332 37.6326
34 333 37.9221
35 334 38.2116
36 335 38.5011
37 336 38.7907
38 337 39.0802
39 338 39.3697
40 339 39.6593
41 340 39.9488
42 341 40.4451
43 342 40.9414
44 343 41.4377
45 344 41.934
46 345 42.4302
47 346 42.9265
48 347 43.4228
49 348 43.9191
50 349 44.4154
51 350 44.9117
52 351 45.0844
53 352 45.257
54 353 45.4297
55 354 45.6023
56 355 45.775
57 356 45.9477
58 357 46.1203
59 358 46.293
60 359 46.4656
61 360 46.6383
62 361 47.1834
63 362 47.7285
64 363 48.2735
65 364 48.8186
66 365 49.3637
67 366 49.9088
68 367 50.4539
69 368 50.9989
70 369 51.544
71 370 52.0891
72 371 51.8777
73 372 51.6664
74 373 51.455
75 374 51.2437
76 375 51.0323
77 376 50.8209
78 377 50.6096
79 378 50.3982
80 379 50.1869
81 380 49.9755
82 381 50.4428
83 382 50.91
84 383 51.3773
85 384 51.8446
86 385 52.3118
87 386 52.7791
88 387 53.2464
89 388 53.7137
90 389 54.1809
91 390 54.6482
92 391 57.4589
93 392 60.2695
94 393 63.0802
95 394 65.8909
96 395 68.7015
97 396 71.5122
98 397 74.3229
99 398 77.1336
100 399 79.9442
101 400 82.7549
102 401 83.628
103 402 84.5011
104 403 85.3742
105 404 86.2473
106 405 87.1204
107 406 87.9936
108 407 88.8667
109 408 89.7398
110 409 90.6129
111 410 91.486
112 411 91.6806
113 412 91.8752
114 413 92.0697
115 414 92.2643
116 415 92.4589
117 416 92.6535
118 417 92.8481
119 418 93.0426
120 419 93.2372
121 420 93.4318
122 421 92.7568
123 422 92.0819
124 423 91.4069
125 424 90.732
126 425 90.057
127 426 89.3821
128 427 88.7071
129 428 88.0322
130 429 87.3572
131 430 86.6823
132 431 88.5006
133 432 90.3188
134 433 92.1371
135 434 93.9554
136 435 95.7736
137 436 97.5919
138 437 99.4102
139 438 101.228
140 439 103.047
141 440 104.865
142 441 106.079
143 442 107.294
144 443 108.508
145 444 109.722
146 445 110.936
147 446 112.151
148 447 113.365
149 448 114.579
150 449 115.794
151 450 117.008
152 451 117.088
153 452 117.169
154 453 117.249
155 454 117.33
156 455 117.41
157 456 117.49
158 457 117.571
159 458 117.651
160 459 117.732
161 460 117.812
162 461 117.517
163 462 117.222
164 463 116.927
165 464 116.632
166 465 116.336
167 466 116.041
168 467 115.746
169 468 115.451
170 469 115.156
171 470 114.861
172 471 114.967
173 472 115.073
174 473 115.18
175 474 115.286
176 475 115.392
177 476 115.498
178 477 115.604
179 478 115.711
180 479 115.817
181 480 115.923
182 481 115.212
183 482 114.501
184 483 113.789
185 484 113.078
186 485 112.367
187 486 111.656
188 487 110.945
189 488 110.233
190 489 109.522
191 490 108.811
192 491 108.865
193 492 108.92
194 493 108.974
195 494 109.028
196 495 109.082
197 496 109.137
198 497 109.191
199 498 109.245
200 499 109.3
201 500 109.354
202 501 109.199
203 502 109.044
204 503 108.888
205 504 108.733
206 505 108.578
207 506 108.423
208 507 108.268
209 508 108.112
210 509 107.957
211 510 107.802
212 511 107.501
213 512 107.2
214 513 106.898
215 514 106.597
216 515 106.296
217 516 105.995
218 517 105.694
219 518 105.392
220 519 105.091
221 520 104.79
222 521 105.08
223 522 105.37
224 523 105.66
225 524 105.95
226 525 106.239
227 526 106.529
228 527 106.819
229 528 107.109
230 529 107.399
231 530 107.689
232 531 107.361
233 532 107.032
234 533 106.704
235 534 106.375
236 535 106.047
237 536 105.719
238 537 105.39
239 538 105.062
240 539 104.733
241 540 104.405
242 541 104.369
243 542 104.333
244 543 104.297
245 544 104.261
246 545 104.225
247 546 104.19
248 547 104.154
249 548 104.118
250 549 104.082
251 550 104.046
252 551 103.641
253 552 103.237
254 553 102.832
255 554 102.428
256 555 102.023
257 556 101.618
258 557 101.214
259 558 100.809
260 559 100.405
261 560 100
262 561 99.6334
263 562 99.2668
264 563 98.9003
265 564 98.5337
266 565 98.1671
267 566 97.8005
268 567 97.4339
269 568 97.0674
270 569 96.7008
271 570 96.3342
272 571 96.2796
273 572 96.225
274 573 96.1703
275 574 96.1157
276 575 96.0611
277 576 96.0065
278 577 95.9519
279 578 95.8972
280 579 95.8426
281 580 95.788
282 581 95.0778
283 582 94.3675
284 583 93.6573
285 584 92.947
286 585 92.2368
287 586 91.5266
288 587 90.8163
289 588 90.1061
290 589 89.3958
291 590 88.6856
292 591 88.8177
293 592 88.9497
294 593 89.0818
295 594 89.2138
296 595 89.3459
297 596 89.478
298 597 89.61
299 598 89.7421
300 599 89.8741
301 600 90.0062
302 601 89.9655
303 602 89.9248
304 603 89.8841
305 604 89.8434
306 605 89.8026
307 606 89.7619
308 607 89.7212
309 608 89.6805
310 609 89.6398
311 610 89.5991
312 611 89.4091
313 612 89.219
314 613 89.029
315 614 88.8389
316 615 88.6489
317 616 88.4589
318 617 88.2688
319 618 88.0788
320 619 87.8887
321 620 87.6987
322 621 87.2577
323 622 86.8167
324 623 86.3757
325 624 85.9347
326 625 85.4936
327 626 85.0526
328 627 84.6116
329 628 84.1706
330 629 83.7296
331 630 83.2886
332 631 83.3297
333 632 83.3707
334 633 83.4118
335 634 83.4528
336 635 83.4939
337 636 83.535
338 637 83.576
339 638 83.6171
340 639 83.6581
341 640 83.6992
342 641 83.332
343 642 82.9647
344 643 82.5975
345 644 82.2302
346 645 81.863
347 646 81.4958
348 647 81.1285
349 648 80.7613
350 649 80.394
351 650 80.0268
352 651 80.0456
353 652 80.0644
354 653 80.0831
355 654 80.1019
356 655 80.1207
357 656 80.1395
358 657 80.1583
359 658 80.177
360 659 80.1958
361 660 80.2146
362 661 80.4209
363 662 80.6272
364 663 80.8336
365 664 81.0399
366 665 81.2462
367 666 81.4525
368 667 81.6588
369 668 81.8652
370 669 82.0715
371 670 82.2778
372 671 81.8784
373 672 81.4791
374 673 81.0797
375 674 80.6804
376 675 80.281
377 676 79.8816
378 677 79.4823
379 678 79.0829
380 679 78.6836
381 680 78.2842
382 681 77.4279
383 682 76.5716
384 683 75.7153
385 684 74.859
386 685 74.0027
387 686 73.1465
388 687 72.2902
389 688 71.4339
390 689 70.5776
391 690 69.7213
392 691 69.9101
393 692 70.0989
394 693 70.2876
395 694 70.4764
396 695 70.6652
397 696 70.854
398 697 71.0428
399 698 71.2315
400 699 71.4203
401 700 71.6091
402 701 71.8831
403 702 72.1571
404 703 72.4311
405 704 72.7051
406 705 72.979
407 706 73.253
408 707 73.527
409 708 73.801
410 709 74.075
411 710 74.349
412 711 73.0745
413 712 71.8
414 713 70.5255
415 714 69.251
416 715 67.9765
417 716 66.702
418 717 65.4275
419 718 64.153
420 719 62.8785
421 720 61.604
422 721 62.4322
423 722 63.2603
424 723 64.0885
425 724 64.9166
426 725 65.7448
427 726 66.573
428 727 67.4011
429 728 68.2293
430 729 69.0574
431 730 69.8856
432 731 70.4057
433 732 70.9259
434 733 71.446
435 734 71.9662
436 735 72.4863
437 736 73.0064
438 737 73.5266
439 738 74.0467
440 739 74.5669
441 740 75.087
442 741 73.9376
443 742 72.7881
444 743 71.6387
445 744 70.4893
446 745 69.3398
447 746 68.1904
448 747 67.041
449 748 65.8916
450 749 64.7421
451 750 63.5927
452 751 61.8752
453 752 60.1578
454 753 58.4403
455 754 56.7229
456 755 55.0054
457 756 53.288
458 757 51.5705
459 758 49.8531
460 759 48.1356
461 760 46.4182
462 761 48.4569
463 762 50.4956
464 763 52.5344
465 764 54.5731
466 765 56.6118
467 766 58.6505
468 767 60.6892
469 768 62.728
470 769 64.7667
471 770 66.8054
472 771 66.4631
473 772 66.1209
474 773 65.7786
475 774 65.4364
476 775 65.0941
477 776 64.7518
478 777 64.4096
479 778 64.0673
480 779 63.7251
481 780 63.3828
482 781 63.4749
483 782 63.567
484 783 63.6592
485 784 63.7513
486 785 63.8434
487 786 63.9355
488 787 64.0276
489 788 64.1198
490 789 64.2119
491 790 64.304
492 791 63.8188
493 792 63.3336
494 793 62.8484
495 794 62.3632
496 795 61.8779
497 796 61.3927
498 797 60.9075
499 798 60.4223
500 799 59.9371
501 800 59.4519
502 801 58.7026
503 802 57.9533
504 803 57.204
505 804 56.4547
506 805 55.7054
507 806 54.9562
508 807 54.2069
509 808 53.4576
510 809 52.7083
511 810 51.959
512 811 52.5072
513 812 53.0553
514 813 53.6035
515 814 54.1516
516 815 54.6998
517 816 55.248
518 817 55.7961
519 818 56.3443
520 819 56.8924
521 820 57.4406
522 821 57.7278
523 822 58.015
524 823 58.3022
525 824 58.5894
526 825 58.8765
527 826 59.1637
528 827 59.4509
529 828 59.7381
530 829 60.0253
531 830 60.3125

Before

Width:  |  Height:  |  Size: 158 KiB

After

Width:  |  Height:  |  Size: 158 KiB

Loading…
Cancel
Save