Compare commits
42 Commits
d94aac009c
...
main
Author | SHA1 | Date | |
---|---|---|---|
5c92606f99 | |||
23c7a550ec | |||
6599c41b14 | |||
9e79333e1e | |||
dbd3d5fc4b | |||
e2c9609e0e | |||
89c4340821 | |||
c0dccbbd0c | |||
ed9e50b8f2 | |||
6e35453932 | |||
77c1a87e4f | |||
cb4dcc53f1 | |||
940e8ebc37 | |||
2a2cf7b642 | |||
c4ee560dc9 | |||
6b47f44ad2 | |||
5f1e816edd | |||
a31488bc78 | |||
67bfafc5b8 | |||
f7d9153ad8 | |||
a22b1cb238 | |||
c91baf9e0c | |||
a90a0db6d5 | |||
1b02f8a96d | |||
18c179f8e3 | |||
1d48a49987 | |||
9b617a82a8 | |||
dfe80011c9 | |||
37539a1906 | |||
70f2f38e96 | |||
e6447fe684 | |||
7c0bc68ab2 | |||
2c28b10a6e | |||
d5173c2d5a | |||
48a591de7e | |||
9ebf8bd1c4 | |||
9106ccf8b0 | |||
3a3949f518 | |||
414af5860b | |||
9175377ac4 | |||
96909002d7 | |||
ac5a42e7bc |
57
README.md
Normal file
@@ -0,0 +1,57 @@
|
||||
# raytracing
|
||||
|
||||
Based on the series <a href="https://raytracing.github.io"><cite>Ray Tracing in One Weekend</cite></a>.
|
||||
|
||||
## Scenes
|
||||
|
||||
### simple
|
||||

|
||||
|
||||
```
|
||||
java -jar raytracing.jar --samples 5000 --height 1080 SIMPLE
|
||||
```
|
||||
|
||||
### spheres
|
||||

|
||||
|
||||
```
|
||||
java -jar raytracing.jar --samples 1000 --height 1080 SPHERES
|
||||
```
|
||||
### squares
|
||||

|
||||
|
||||
```
|
||||
java -jar raytracing.jar --samples 500 --height 1200 SQUARES
|
||||
```
|
||||
|
||||
### cornell box
|
||||
|
||||

|
||||
|
||||
```
|
||||
java -jar raytracing.jar --samples 50000 --height 1200 CORNELL
|
||||
```
|
||||
|
||||
### cornell box with smoke
|
||||
|
||||

|
||||
|
||||
```
|
||||
java -jar raytracing.jar --samples 50000 --height 600 CORNELL_SMOKE
|
||||
```
|
||||
|
||||
### diagramm
|
||||
|
||||

|
||||
|
||||
```
|
||||
java -jar raytracing.jar --samples 1000 --height 1080 DIAGRAMM
|
||||
```
|
||||
|
||||
### a little bit of everything
|
||||
|
||||

|
||||
|
||||
```
|
||||
java -jar raytracing.jar --samples 10000 --height 1200 FINAL
|
||||
```
|
BIN
docs/cornell.png
Normal file
After Width: | Height: | Size: 1.6 MiB |
BIN
docs/cornell_smoke.png
Normal file
After Width: | Height: | Size: 441 KiB |
BIN
docs/diagramm.png
Normal file
After Width: | Height: | Size: 2.3 MiB |
BIN
docs/final.png
Normal file
After Width: | Height: | Size: 3.1 MiB |
BIN
docs/simple.png
Normal file
After Width: | Height: | Size: 881 KiB |
BIN
docs/spheres.png
Normal file
After Width: | Height: | Size: 1.8 MiB |
BIN
docs/squares.png
Normal file
After Width: | Height: | Size: 620 KiB |
8
src/main/java/eu/jonahbauer/raytracing/Example.java
Normal file
@@ -0,0 +1,8 @@
|
||||
package eu.jonahbauer.raytracing;
|
||||
|
||||
import eu.jonahbauer.raytracing.render.camera.Camera;
|
||||
import eu.jonahbauer.raytracing.scene.Scene;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
public record Example(@NotNull Scene scene, @NotNull Camera camera) {
|
||||
}
|
397
src/main/java/eu/jonahbauer/raytracing/Examples.java
Normal file
@@ -0,0 +1,397 @@
|
||||
package eu.jonahbauer.raytracing;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.texture.CheckerTexture;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import eu.jonahbauer.raytracing.render.camera.SimpleCamera;
|
||||
import eu.jonahbauer.raytracing.render.material.*;
|
||||
import eu.jonahbauer.raytracing.render.texture.ImageTexture;
|
||||
import eu.jonahbauer.raytracing.render.texture.PerlinTexture;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import eu.jonahbauer.raytracing.scene.Scene;
|
||||
import eu.jonahbauer.raytracing.scene.SkyBox;
|
||||
import eu.jonahbauer.raytracing.scene.hittable2d.Parallelogram;
|
||||
import eu.jonahbauer.raytracing.scene.hittable3d.Box;
|
||||
import eu.jonahbauer.raytracing.scene.hittable3d.ConstantMedium;
|
||||
import eu.jonahbauer.raytracing.scene.hittable3d.Sphere;
|
||||
import eu.jonahbauer.raytracing.scene.util.HittableBinaryTree;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.*;
|
||||
import java.util.function.IntFunction;
|
||||
|
||||
public class Examples {
|
||||
private static final Map<String, IntFunction<Example>> REGISTRY = new HashMap<>();
|
||||
|
||||
private static void register(@NotNull String name, @NotNull IntFunction<Example> example) {
|
||||
REGISTRY.put(name, example);
|
||||
}
|
||||
|
||||
static {
|
||||
register("SIMPLE", Examples::getSimpleScene);
|
||||
register("SPHERES", Examples::getSpheres);
|
||||
register("SQUARES", Examples::getSquares);
|
||||
register("LIGHT", Examples::getLight);
|
||||
register("CORNELL", Examples::getCornellBox);
|
||||
register("CORNELL_SMOKE", Examples::getCornellBoxSmoke);
|
||||
register("CORNELL_SPHERE", Examples::getCornellBoxSphere);
|
||||
register("DIAGRAMM", Examples::getDiagramm);
|
||||
register("EARTH", Examples::getEarth);
|
||||
register("PERLIN", Examples::getPerlin);
|
||||
register("FINAL", Examples::getFinal);
|
||||
}
|
||||
|
||||
public static @NotNull IntFunction<Example> getByName(@NotNull String name) {
|
||||
var out = REGISTRY.get(name);
|
||||
if (out == null) throw new IllegalArgumentException("unknown example " + name + ", expected one of " + REGISTRY.keySet());
|
||||
return out;
|
||||
}
|
||||
|
||||
public static @NotNull Example getSimpleScene(int height) {
|
||||
if (height <= 0) height = 675;
|
||||
return new Example(
|
||||
new Scene(getSkyBox(), List.of(
|
||||
new Sphere(new Vec3(0, -100.5, -1.0), 100.0, new LambertianMaterial(new Color(0.8, 0.8, 0.0))),
|
||||
new Sphere(new Vec3(0, 0, -1.2), 0.5, new LambertianMaterial(new Color(0.1, 0.2, 0.5))),
|
||||
new Sphere(new Vec3(-1.0, 0, -1.2), 0.5, new DielectricMaterial(1.5)),
|
||||
new Sphere(new Vec3(-1.0, 0, -1.2), 0.4, new DielectricMaterial(1 / 1.5)),
|
||||
new Sphere(new Vec3(1.0, 0, -1.2), 0.5, new MetallicMaterial(new Color(0.8, 0.6, 0.2), 0.0))
|
||||
)),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height * 16 / 9, height)
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getSpheres(int height) {
|
||||
if (height <= 0) height = 675;
|
||||
|
||||
var rng = new Random(1);
|
||||
var objects = new ArrayList<Hittable>();
|
||||
objects.add(new Sphere(
|
||||
new Vec3(0, -1000, 0), 1000,
|
||||
new LambertianMaterial(new CheckerTexture(0.32, new Color(.2, .3, .1), new Color(.9, .9, .9)))
|
||||
));
|
||||
|
||||
for (int a = -11; a < 11; a++) {
|
||||
for (int b = -11; b < 11; b++) {
|
||||
var center = new Vec3(a + 0.9 * rng.nextDouble(), 0.2, b + 0.9 * rng.nextDouble());
|
||||
if (Vec3.distance(center, new Vec3(4, 0.2, 0)) <= 0.9) continue;
|
||||
|
||||
Material material;
|
||||
var rnd = rng.nextDouble();
|
||||
if (rnd < 0.8) {
|
||||
// diffuse
|
||||
var albedo = Color.multiply(Color.random(rng), Color.random(rng));
|
||||
material = new LambertianMaterial(albedo);
|
||||
} else if (rnd < 0.95) {
|
||||
// metal
|
||||
var albedo = Color.random(rng, 0.5, 1.0);
|
||||
var fuzz = rng.nextDouble() * 0.5;
|
||||
material = new MetallicMaterial(albedo, fuzz);
|
||||
} else {
|
||||
// glass
|
||||
material = new DielectricMaterial(1.5);
|
||||
}
|
||||
|
||||
objects.add(new Sphere(center, 0.2, material));
|
||||
}
|
||||
}
|
||||
|
||||
objects.add(new Sphere(new Vec3(0, 1, 0), 1.0, new DielectricMaterial(1.5)));
|
||||
objects.add(new Sphere(new Vec3(-4, 1, 0), 1.0, new LambertianMaterial(new Color(0.4, 0.2, 0.1))));
|
||||
objects.add(new Sphere(new Vec3(4, 1, 0), 1.0, new MetallicMaterial(new Color(0.7, 0.6, 0.5))));
|
||||
|
||||
var camera = SimpleCamera.builder()
|
||||
.withImage(height * 16 / 9, height)
|
||||
.withPosition(new Vec3(13, 2, 3))
|
||||
.withTarget(new Vec3(0, 0, 0))
|
||||
.withFieldOfView(Math.toRadians(20))
|
||||
.withFocusDistance(10.0)
|
||||
.withBlurAngle(Math.toRadians(0.6))
|
||||
.build();
|
||||
|
||||
return new Example(new Scene(getSkyBox(), objects), camera);
|
||||
}
|
||||
|
||||
public static @NotNull Example getSquares(int height) {
|
||||
if (height <= 0) height = 600;
|
||||
return new Example(
|
||||
new Scene(getSkyBox(), List.of(
|
||||
new Parallelogram(new Vec3(-3, -2, 5), new Vec3(0, 0, -4), new Vec3(0, 4, 0), new LambertianMaterial(new Color(1.0, 0.2, 0.2))),
|
||||
new Parallelogram(new Vec3(-2, -2, 0), new Vec3(4, 0, 0), new Vec3(0, 4, 0), new LambertianMaterial(new Color(0.2, 1.0, 0.2))),
|
||||
new Parallelogram(new Vec3(3, -2, 1), new Vec3(0, 0, 4), new Vec3(0, 4, 0), new LambertianMaterial(new Color(0.2, 0.2, 1.0))),
|
||||
new Parallelogram(new Vec3(-2, 3, 1), new Vec3(4, 0, 0), new Vec3(0, 0, 4), new LambertianMaterial(new Color(1.0, 0.5, 0.0))),
|
||||
new Parallelogram(new Vec3(-2, -3, 5), new Vec3(4, 0, 0), new Vec3(0, 0, -4), new LambertianMaterial(new Color(0.2, 0.8, 0.8)))
|
||||
)),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height, height)
|
||||
.withFieldOfView(Math.toRadians(80))
|
||||
.withPosition(new Vec3(0, 0, 9))
|
||||
.withTarget(new Vec3(0, 0, 0))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getLight(int height) {
|
||||
if (height <= 0) height = 225;
|
||||
return new Example(
|
||||
new Scene(List.of(
|
||||
new Sphere(new Vec3(0, -1000, 0), 1000, new LambertianMaterial(new Color(0.2, 0.2, 0.2))),
|
||||
new Sphere(new Vec3(0, 2, 0), 2, new LambertianMaterial(new Color(0.2, 0.2, 0.2))),
|
||||
new Parallelogram(new Vec3(3, 1, -2), new Vec3(2, 0, 0), new Vec3(0, 2, 0), new DiffuseLight(new Color(4.0, 4.0, 4.0))),
|
||||
new Sphere(new Vec3(0, 7, 0), 2, new DiffuseLight(new Color(4.0, 4.0, 4.0)))
|
||||
)),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height * 16 / 9, height)
|
||||
.withFieldOfView(Math.toRadians(20))
|
||||
.withPosition(new Vec3(26, 3, 6))
|
||||
.withTarget(new Vec3(0, 2, 0))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getCornellBox(int height) {
|
||||
if (height <= 0) height = 600;
|
||||
|
||||
var red = new LambertianMaterial(new Color(.65, .05, .05));
|
||||
var white = new LambertianMaterial(new Color(.73, .73, .73));
|
||||
var green = new LambertianMaterial(new Color(.12, .45, .15));
|
||||
var light = new DiffuseLight(new Color(15.0, 15.0, 15.0));
|
||||
|
||||
return new Example(
|
||||
new Scene(List.of(
|
||||
new Box(new Vec3(0, 0, 0), new Vec3(555, 555, 555), white, white, red, green, white, null),
|
||||
new Parallelogram(new Vec3(343, 554, 332), new Vec3(-130, 0, 0), new Vec3(0, 0, -105), light),
|
||||
new Box(new Vec3(0, 0, 0), new Vec3(165, 330, 165), white)
|
||||
.rotateY(Math.toRadians(15))
|
||||
.translate(new Vec3(265, 0, 295)),
|
||||
new Box(new Vec3(0, 0, 0), new Vec3(165, 165, 165), white)
|
||||
.rotateY(Math.toRadians(-18))
|
||||
.translate(new Vec3(130, 0, 65))
|
||||
)),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height, height)
|
||||
.withFieldOfView(Math.toRadians(40))
|
||||
.withPosition(new Vec3(278, 278, -800))
|
||||
.withTarget(new Vec3(278, 278, 0))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getCornellBoxSmoke(int height) {
|
||||
if (height <= 0) height = 600;
|
||||
var red = new LambertianMaterial(new Color(.65, .05, .05));
|
||||
var white = new LambertianMaterial(new Color(.73, .73, .73));
|
||||
var green = new LambertianMaterial(new Color(.12, .45, .15));
|
||||
var light = new DiffuseLight(new Color(7.0, 7.0, 7.0));
|
||||
|
||||
return new Example(
|
||||
new Scene(List.of(
|
||||
new Box(new Vec3(0, 0, 0), new Vec3(555, 555, 555), white, white, red, green, white, null),
|
||||
new Parallelogram(new Vec3(113, 554, 127), new Vec3(330, 0, 0), new Vec3(0, 0, 305), light),
|
||||
new ConstantMedium(
|
||||
new Box(new Vec3(0, 0, 0), new Vec3(165, 330, 165), white)
|
||||
.rotateY(Math.toRadians(15))
|
||||
.translate(new Vec3(265, 0, 295)),
|
||||
0.01, new IsotropicMaterial(Color.BLACK)
|
||||
),
|
||||
new ConstantMedium(
|
||||
new Box(new Vec3(0, 0, 0), new Vec3(165, 165, 165), white)
|
||||
.rotateY(Math.toRadians(-18))
|
||||
.translate(new Vec3(130, 0, 65)),
|
||||
0.01, new IsotropicMaterial(Color.WHITE)
|
||||
)
|
||||
)),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height, height)
|
||||
.withFieldOfView(Math.toRadians(40))
|
||||
.withPosition(new Vec3(278, 278, -800))
|
||||
.withTarget(new Vec3(278, 278, 0))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getCornellBoxSphere(int height) {
|
||||
if (height <= 0) height = 600;
|
||||
|
||||
var red = new LambertianMaterial(new Color(.65, .05, .05));
|
||||
var white = new LambertianMaterial(new Color(.73, .73, .73));
|
||||
var green = new LambertianMaterial(new Color(.12, .45, .15));
|
||||
var light = new DiffuseLight(new Color(7.0, 7.0, 7.0));
|
||||
var glass = new DielectricMaterial(1.5);
|
||||
|
||||
var room = new Box(new Vec3(0, 0, 0), new Vec3(555, 555, 555), white, white, red, green, white, null);
|
||||
var lamp = new Parallelogram(new Vec3(343, 554, 332), new Vec3(-130, 0, 0), new Vec3(0, 0, -105), light);
|
||||
var box = new Box(new Vec3(0, 0, 0), new Vec3(165, 330, 165), white)
|
||||
.rotateY(Math.toRadians(15))
|
||||
.translate(new Vec3(265, 0, 295));
|
||||
var sphere = new Sphere(new Vec3(190, 90, 190), 90, glass);
|
||||
|
||||
return new Example(
|
||||
new Scene(List.of(room, box), List.of(lamp, sphere)),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height, height)
|
||||
.withFieldOfView(Math.toRadians(40))
|
||||
.withPosition(new Vec3(278, 278, -800))
|
||||
.withTarget(new Vec3(278, 278, 0))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getDiagramm(int height) {
|
||||
if (height <= 0) height = 450;
|
||||
|
||||
record Partei(String name, Color color, double stimmen) { }
|
||||
var data = List.of(
|
||||
new Partei("CDU", new Color(0x00, 0x4B, 0x76), 18.9),
|
||||
new Partei("SPD", new Color(0xC0, 0x00, 0x3C), 25.7),
|
||||
new Partei("AfD", new Color(0x80, 0xCD, 0xEC), 10.3),
|
||||
new Partei("FDP", new Color(0xF7, 0xBB, 0x3D), 11.5),
|
||||
new Partei("DIE LINKE", new Color(0x5F, 0x31, 0x6E), 4.9),
|
||||
new Partei("GRÜNE", new Color(0x00, 0x85, 0x4A), 14.8),
|
||||
new Partei("CSU", new Color(0x00, 0x77, 0xB6), 5.2)
|
||||
);
|
||||
var white = new LambertianMaterial(new Color(.99, .99, .99));
|
||||
|
||||
var count = data.size();
|
||||
var size = 75d;
|
||||
var spacing = 50d;
|
||||
|
||||
var x = (count + 1) * spacing + count * size + 1000;
|
||||
var y = 500 + 1000;
|
||||
var z = 2 * spacing + size + 1000;
|
||||
|
||||
var objects = new ArrayList<Hittable>();
|
||||
objects.add(new Parallelogram(new Vec3(0, 0, 0), new Vec3(x, 0, 0), new Vec3(0, y, 0), white));
|
||||
objects.add(new Parallelogram(new Vec3(0, 0, 0), new Vec3(0, 0, z), new Vec3(x, 0, 0), white));
|
||||
objects.add(new Parallelogram(new Vec3(0, 0, 0), new Vec3(0, y, 0), new Vec3(0, 0, z), white));
|
||||
|
||||
for (int i = 0; i < data.size(); i++) {
|
||||
var partei = data.get(i);
|
||||
objects.add(new Box(
|
||||
new Vec3((i + 1) * spacing + i * size, 0, spacing),
|
||||
new Vec3((i + 1) * spacing + (i + 1) * size, partei.stimmen() * 15, spacing + size),
|
||||
new DielectricMaterial(1.5, partei.color())
|
||||
));
|
||||
}
|
||||
|
||||
return new Example(
|
||||
new Scene(new Color(1.25, 1.25, 1.25), objects),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height * 16 / 9, height)
|
||||
.withPosition(new Vec3(700, 250, 800))
|
||||
.withTarget(new Vec3(500, 200, 0))
|
||||
.withFieldOfView(Math.toRadians(40))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getEarth(int height) {
|
||||
if (height <= 0) height = 450;
|
||||
|
||||
return new Example(
|
||||
new Scene(getSkyBox(), List.of(
|
||||
new Sphere(Vec3.ZERO, 2, new LambertianMaterial(new ImageTexture("/earthmap.jpg")))
|
||||
)),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height * 16 / 9, height)
|
||||
.withFieldOfView(Math.toRadians(20))
|
||||
.withPosition(new Vec3(12, 0, 0))
|
||||
.withTarget(Vec3.ZERO)
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getPerlin(int height) {
|
||||
if (height <= 0) height = 450;
|
||||
|
||||
var material = new LambertianMaterial(new PerlinTexture(4));
|
||||
|
||||
return new Example(
|
||||
new Scene(getSkyBox(), List.of(
|
||||
new Sphere(new Vec3(0, -1000, 0), 1000, material),
|
||||
new Sphere(new Vec3(0, 2, 0), 2, material)
|
||||
)),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height * 16 / 9, height)
|
||||
.withFieldOfView(Math.toRadians(20))
|
||||
.withPosition(new Vec3(13, 2, 3))
|
||||
.withTarget(Vec3.ZERO)
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getFinal(int height) {
|
||||
if (height <= 0) height = 400;
|
||||
|
||||
var objects = new ArrayList<Hittable>();
|
||||
var random = new Random(1);
|
||||
|
||||
// boxes
|
||||
var boxes = new ArrayList<Hittable>();
|
||||
var ground = new LambertianMaterial(new Color(0.48, 0.83, 0.53));
|
||||
for (int i = 0; i < 20; i++) {
|
||||
for (int j = 0; j < 20; j++) {
|
||||
var w = 100.0;
|
||||
var x0 = -1000.0 + i * w;
|
||||
var z0 = -1000.0 + j * w;
|
||||
var y0 = 0.0;
|
||||
var x1 = x0 + w;
|
||||
var y1 = random.nextInt(1, 101);
|
||||
var z1 = z0 + w;
|
||||
boxes.add(new Box(new Vec3(x0, y0, z0), new Vec3(x1, y1, z1), ground));
|
||||
}
|
||||
}
|
||||
objects.add(new HittableBinaryTree(boxes));
|
||||
|
||||
// light
|
||||
objects.add(new Parallelogram(
|
||||
new Vec3(123, 554, 147), new Vec3(300, 0, 0), new Vec3(0, 0, 265),
|
||||
new DiffuseLight(new Color(7., 7., 7.))
|
||||
));
|
||||
|
||||
// spheres with different materials
|
||||
objects.add(new Sphere(new Vec3(400, 400, 200), 50, new LambertianMaterial(new Color(0.7, 0.3, 0.1))));
|
||||
objects.add(new Sphere(new Vec3(260, 150, 45), 50, new DielectricMaterial(1.5)));
|
||||
objects.add(new Sphere(new Vec3(0, 150, 145), 50, new MetallicMaterial(new Color(0.8, 0.8, 0.9), 1.0)));
|
||||
|
||||
// glass sphere filled with gas
|
||||
var boundary = new Sphere(new Vec3(360, 150, 145), 70, new DielectricMaterial(1.5));
|
||||
objects.add(boundary);
|
||||
objects.add(new ConstantMedium(boundary, 0.2, new IsotropicMaterial(new Color(0.2, 0.4, 0.9))));
|
||||
|
||||
// put the world in a glass sphere
|
||||
objects.add(new ConstantMedium(
|
||||
new Sphere(new Vec3(0, 0, 0), 5000, new DielectricMaterial(1.5)),
|
||||
0.0001, new IsotropicMaterial(new Color(1., 1., 1.))
|
||||
));
|
||||
|
||||
// textures spheres
|
||||
objects.add(new Sphere(new Vec3(400, 200, 400), 100, new LambertianMaterial(new ImageTexture("/earthmap.jpg"))));
|
||||
objects.add(new Sphere(new Vec3(220, 280, 300), 80, new LambertianMaterial(new PerlinTexture(0.2))));
|
||||
|
||||
// box from spheres
|
||||
var white = new LambertianMaterial(new Color(.73, .73, .73));
|
||||
var spheres = new ArrayList<Hittable>();
|
||||
for (int j = 0; j < 1000; j++) {
|
||||
spheres.add(new Sphere(new Vec3(random.nextDouble(165), random.nextDouble(165), random.nextDouble(165)), 10, white));
|
||||
}
|
||||
objects.add(new HittableBinaryTree(spheres).rotateY(Math.toRadians(15)).translate(new Vec3(-100, 270, 395)));
|
||||
|
||||
return new Example(
|
||||
new Scene(objects),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height, height)
|
||||
.withFieldOfView(Math.toRadians(40))
|
||||
.withPosition(new Vec3(478, 278, -600))
|
||||
.withTarget(new Vec3(278, 278, 0))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
private static @NotNull SkyBox getSkyBox() {
|
||||
return SkyBox.gradient(new Color(0.5, 0.7, 1.0), Color.WHITE);
|
||||
}
|
||||
}
|
@@ -1,32 +1,20 @@
|
||||
package eu.jonahbauer.raytracing;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.ImageFormat;
|
||||
import eu.jonahbauer.raytracing.render.camera.Camera;
|
||||
import eu.jonahbauer.raytracing.render.camera.SimpleCamera;
|
||||
import eu.jonahbauer.raytracing.render.canvas.Canvas;
|
||||
import eu.jonahbauer.raytracing.render.canvas.Image;
|
||||
import eu.jonahbauer.raytracing.render.canvas.LiveCanvas;
|
||||
import eu.jonahbauer.raytracing.render.material.*;
|
||||
import eu.jonahbauer.raytracing.render.renderer.SimpleRenderer;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import eu.jonahbauer.raytracing.scene.Scene;
|
||||
import eu.jonahbauer.raytracing.scene.SkyBox;
|
||||
import eu.jonahbauer.raytracing.scene.hittable2d.Parallelogram;
|
||||
import eu.jonahbauer.raytracing.scene.hittable3d.ConstantMedium;
|
||||
import eu.jonahbauer.raytracing.scene.hittable3d.Sphere;
|
||||
import eu.jonahbauer.raytracing.scene.util.Hittables;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.nio.file.InvalidPathException;
|
||||
import java.nio.file.Path;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Random;
|
||||
import java.util.function.IntFunction;
|
||||
|
||||
public class Main {
|
||||
public static final boolean DEBUG = false;
|
||||
|
||||
public static void main(String[] args) throws IOException {
|
||||
var config = Config.parse(args);
|
||||
var example = config.example;
|
||||
@@ -37,6 +25,7 @@ public class Main {
|
||||
.withSamplesPerPixel(config.samples)
|
||||
.withMaxDepth(config.depth)
|
||||
.withIterative(config.iterative)
|
||||
.withParallel(config.parallel)
|
||||
.build();
|
||||
|
||||
Canvas canvas;
|
||||
@@ -55,13 +44,13 @@ public class Main {
|
||||
ImageFormat.PNG.write(canvas, config.path);
|
||||
}
|
||||
|
||||
private record Config(@NotNull Example example, @NotNull Path path, boolean preview, boolean iterative, int samples, int depth) {
|
||||
|
||||
private record Config(@NotNull Example example, @NotNull Path path, boolean preview, boolean iterative, boolean parallel, int samples, int depth) {
|
||||
public static @NotNull Config parse(@NotNull String @NotNull[] args) {
|
||||
IntFunction<Example> example = null;
|
||||
Path path = null;
|
||||
boolean preview = true;
|
||||
boolean iterative = false;
|
||||
boolean parallel = false;
|
||||
int samples = 1000;
|
||||
int depth = 50;
|
||||
int height = -1;
|
||||
@@ -80,6 +69,8 @@ public class Main {
|
||||
case "--no-preview" -> preview = false;
|
||||
case "--iterative" -> iterative = true;
|
||||
case "--no-iterative" -> iterative = false;
|
||||
case "--parallel" -> parallel = true;
|
||||
case "--no-parallel" -> parallel = false;
|
||||
case "--samples" -> {
|
||||
if (i + 1 == args.length) throw fail("missing value for parameter --samples");
|
||||
try {
|
||||
@@ -107,22 +98,20 @@ public class Main {
|
||||
throw fail("value " + args[i] + " is not a valid integer");
|
||||
}
|
||||
}
|
||||
case String str when !str.startsWith("-") -> example = switch (str) {
|
||||
case "SIMPLE" -> Examples::getSimpleScene;
|
||||
case "SPHERES" -> Examples::getSpheres;
|
||||
case "SQUARES" -> Examples::getSquares;
|
||||
case "LIGHT" -> Examples::getLight;
|
||||
case "CORNELL" -> Examples::getCornellBox;
|
||||
case "CORNELL_SMOKE" -> Examples::getCornellBoxSmoke;
|
||||
default -> throw fail("unknown example " + str + ", expected one of SIMPLE, SPHERES, SQUARES, LIGHT, CORNELL or CORNELL_SMOKE");
|
||||
};
|
||||
case String str when !str.startsWith("-") -> {
|
||||
try {
|
||||
example = Examples.getByName(str);
|
||||
} catch (IllegalArgumentException ex) {
|
||||
throw fail(ex.getMessage());
|
||||
}
|
||||
}
|
||||
default -> throw fail("unknown option " + args[i]);
|
||||
}
|
||||
}
|
||||
|
||||
if (example == null) example = Examples::getCornellBoxSmoke;
|
||||
if (path == null) path = Path.of("scene-" + System.currentTimeMillis() + ".png");
|
||||
return new Config(example.apply(height), path, preview, iterative, samples, depth);
|
||||
return new Config(example.apply(height), path, preview, iterative, parallel, samples, depth);
|
||||
}
|
||||
|
||||
private static @NotNull RuntimeException fail(@NotNull String message) {
|
||||
@@ -130,178 +119,5 @@ public class Main {
|
||||
System.exit(1);
|
||||
return new RuntimeException();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private static class Examples {
|
||||
public static @NotNull Example getSimpleScene(int height) {
|
||||
if (height <= 0) height = 675;
|
||||
return new Example(
|
||||
new Scene(
|
||||
getSkyBox(),
|
||||
new Sphere(new Vec3(0, -100.5, -1.0), 100.0, new LambertianMaterial(new Color(0.8, 0.8, 0.0))),
|
||||
new Sphere(new Vec3(0, 0, -1.2), 0.5, new LambertianMaterial(new Color(0.1, 0.2, 0.5))),
|
||||
new Sphere(new Vec3(-1.0, 0, -1.2), 0.5, new DielectricMaterial(1.5)),
|
||||
new Sphere(new Vec3(-1.0, 0, -1.2), 0.4, new DielectricMaterial(1 / 1.5)),
|
||||
new Sphere(new Vec3(1.0, 0, -1.2), 0.5, new MetallicMaterial(new Color(0.8, 0.6, 0.2), 0.0))
|
||||
),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height * 16 / 9, height)
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getSpheres(int height) {
|
||||
if (height <= 0) height = 675;
|
||||
|
||||
var rng = new Random(1);
|
||||
var objects = new ArrayList<Hittable>();
|
||||
objects.add(new Sphere(new Vec3(0, -1000, 0), 1000, new LambertianMaterial(new Color(0.5, 0.5, 0.5))));
|
||||
|
||||
for (int a = -11; a < 11; a++) {
|
||||
for (int b = -11; b < 11; b++) {
|
||||
var center = new Vec3(a + 0.9 * rng.nextDouble(), 0.2, b + 0.9 * rng.nextDouble());
|
||||
if (Vec3.distance(center, new Vec3(4, 0.2, 0)) <= 0.9) continue;
|
||||
|
||||
Material material;
|
||||
var rnd = rng.nextDouble();
|
||||
if (rnd < 0.8) {
|
||||
// diffuse
|
||||
var albedo = Color.multiply(Color.random(rng), Color.random(rng));
|
||||
material = new LambertianMaterial(albedo);
|
||||
} else if (rnd < 0.95) {
|
||||
// metal
|
||||
var albedo = Color.random(rng, 0.5, 1.0);
|
||||
var fuzz = rng.nextDouble() * 0.5;
|
||||
material = new MetallicMaterial(albedo, fuzz);
|
||||
} else {
|
||||
// glass
|
||||
material = new DielectricMaterial(1.5);
|
||||
}
|
||||
|
||||
objects.add(new Sphere(center, 0.2, material));
|
||||
}
|
||||
}
|
||||
|
||||
objects.add(new Sphere(new Vec3(0, 1, 0), 1.0, new DielectricMaterial(1.5)));
|
||||
objects.add(new Sphere(new Vec3(-4, 1, 0), 1.0, new LambertianMaterial(new Color(0.4, 0.2, 0.1))));
|
||||
objects.add(new Sphere(new Vec3(4, 1, 0), 1.0, new MetallicMaterial(new Color(0.7, 0.6, 0.5))));
|
||||
|
||||
var camera = SimpleCamera.builder()
|
||||
.withImage(height * 16 / 9, height)
|
||||
.withPosition(new Vec3(13, 2, 3))
|
||||
.withTarget(new Vec3(0, 0, 0))
|
||||
.withFieldOfView(Math.toRadians(20))
|
||||
.withFocusDistance(10.0)
|
||||
.withBlurAngle(Math.toRadians(0.6))
|
||||
.build();
|
||||
|
||||
return new Example(new Scene(getSkyBox(), objects), camera);
|
||||
}
|
||||
|
||||
public static @NotNull Example getSquares(int height) {
|
||||
if (height <= 0) height = 600;
|
||||
return new Example(
|
||||
new Scene(
|
||||
getSkyBox(),
|
||||
new Parallelogram(new Vec3(-3, -2, 5), new Vec3(0, 0, -4), new Vec3(0, 4, 0), new LambertianMaterial(new Color(1.0, 0.2, 0.2))),
|
||||
new Parallelogram(new Vec3(-2, -2, 0), new Vec3(4, 0, 0), new Vec3(0, 4, 0), new LambertianMaterial(new Color(0.2, 1.0, 0.2))),
|
||||
new Parallelogram(new Vec3(3, -2, 1), new Vec3(0, 0, 4), new Vec3(0, 4, 0), new LambertianMaterial(new Color(0.2, 0.2, 1.0))),
|
||||
new Parallelogram(new Vec3(-2, 3, 1), new Vec3(4, 0, 0), new Vec3(0, 0, 4), new LambertianMaterial(new Color(1.0, 0.5, 0.0))),
|
||||
new Parallelogram(new Vec3(-2, -3, 5), new Vec3(4, 0, 0), new Vec3(0, 0, -4), new LambertianMaterial(new Color(0.2, 0.8, 0.8)))
|
||||
),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height, height)
|
||||
.withFieldOfView(Math.toRadians(80))
|
||||
.withPosition(new Vec3(0, 0, 9))
|
||||
.withTarget(new Vec3(0, 0, 0))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getLight(int height) {
|
||||
if (height <= 0) height = 225;
|
||||
return new Example(
|
||||
new Scene(
|
||||
new Sphere(new Vec3(0, -1000, 0), 1000, new LambertianMaterial(new Color(0.2, 0.2, 0.2))),
|
||||
new Sphere(new Vec3(0, 2, 0), 2, new LambertianMaterial(new Color(0.2, 0.2, 0.2))),
|
||||
new Parallelogram(new Vec3(3, 1, -2), new Vec3(2, 0, 0), new Vec3(0, 2, 0), new DiffuseLight(new Color(4.0, 4.0, 4.0))),
|
||||
new Sphere(new Vec3(0, 7, 0), 2, new DiffuseLight(new Color(4.0, 4.0, 4.0)))
|
||||
),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height * 16 / 9, height)
|
||||
.withFieldOfView(Math.toRadians(20))
|
||||
.withPosition(new Vec3(26, 3, 6))
|
||||
.withTarget(new Vec3(0, 2, 0))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getCornellBox(int height) {
|
||||
if (height <= 0) height = 600;
|
||||
|
||||
var red = new LambertianMaterial(new Color(.65, .05, .05));
|
||||
var white = new LambertianMaterial(new Color(.73, .73, .73));
|
||||
var green = new LambertianMaterial(new Color(.12, .45, .15));
|
||||
var light = new DiffuseLight(new Color(15.0, 15.0, 15.0));
|
||||
|
||||
return new Example(
|
||||
new Scene(
|
||||
new Parallelogram(new Vec3(555, 0, 0), new Vec3(0, 555, 0), new Vec3(0, 0, 555), green),
|
||||
new Parallelogram(new Vec3(0, 0, 0), new Vec3(0, 555, 0), new Vec3(0, 0, 555), red),
|
||||
new Parallelogram(new Vec3(343, 554, 332), new Vec3(-130, 0, 0), new Vec3(0, 0, -105), light),
|
||||
new Parallelogram(new Vec3(0, 0, 0), new Vec3(555, 0 ,0), new Vec3(0, 0, 555), white),
|
||||
new Parallelogram(new Vec3(555, 555, 555), new Vec3(-555, 0 ,0), new Vec3(0, 0, -555), white),
|
||||
new Parallelogram(new Vec3(0, 0, 555), new Vec3(555, 0 ,0), new Vec3(0, 555, 0), white),
|
||||
Hittables.box(new Vec3(0, 0, 0), new Vec3(165, 330, 165), white).rotateY(Math.toRadians(15)).translate(new Vec3(265, 0, 295)),
|
||||
Hittables.box(new Vec3(0, 0, 0), new Vec3(165, 165, 165), white).rotateY(Math.toRadians(-18)).translate(new Vec3(130, 0, 65))
|
||||
),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height, height)
|
||||
.withFieldOfView(Math.toRadians(40))
|
||||
.withPosition(new Vec3(278, 278, -800))
|
||||
.withTarget(new Vec3(278, 278, 0))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
public static @NotNull Example getCornellBoxSmoke(int height) {
|
||||
if (height <= 0) height = 600;
|
||||
var red = new LambertianMaterial(new Color(.65, .05, .05));
|
||||
var white = new LambertianMaterial(new Color(.73, .73, .73));
|
||||
var green = new LambertianMaterial(new Color(.12, .45, .15));
|
||||
var light = new DiffuseLight(new Color(7.0, 7.0, 7.0));
|
||||
|
||||
return new Example(
|
||||
new Scene(
|
||||
new Parallelogram(new Vec3(555, 0, 0), new Vec3(0, 555, 0), new Vec3(0, 0, 555), green),
|
||||
new Parallelogram(new Vec3(0, 0, 0), new Vec3(0, 555, 0), new Vec3(0, 0, 555), red),
|
||||
new Parallelogram(new Vec3(113, 554, 127), new Vec3(330, 0, 0), new Vec3(0, 0, 305), light),
|
||||
new Parallelogram(new Vec3(0, 0, 0), new Vec3(555, 0 ,0), new Vec3(0, 0, 555), white),
|
||||
new Parallelogram(new Vec3(555, 555, 555), new Vec3(-555, 0 ,0), new Vec3(0, 0, -555), white),
|
||||
new Parallelogram(new Vec3(0, 0, 555), new Vec3(555, 0 ,0), new Vec3(0, 555, 0), white),
|
||||
new ConstantMedium(
|
||||
Hittables.box(new Vec3(0, 0, 0), new Vec3(165, 330, 165), white).rotateY(Math.toRadians(15)).translate(new Vec3(265, 0, 295)),
|
||||
0.01, new IsotropicMaterial(Color.BLACK)
|
||||
),
|
||||
new ConstantMedium(
|
||||
Hittables.box(new Vec3(0, 0, 0), new Vec3(165, 165, 165), white).rotateY(Math.toRadians(-18)).translate(new Vec3(130, 0, 65)),
|
||||
0.01, new IsotropicMaterial(Color.WHITE)
|
||||
)
|
||||
),
|
||||
SimpleCamera.builder()
|
||||
.withImage(height, height)
|
||||
.withFieldOfView(Math.toRadians(40))
|
||||
.withPosition(new Vec3(278, 278, -800))
|
||||
.withTarget(new Vec3(278, 278, 0))
|
||||
.build()
|
||||
);
|
||||
}
|
||||
|
||||
private static @NotNull SkyBox getSkyBox() {
|
||||
return SkyBox.gradient(new Color(0.5, 0.7, 1.0), Color.WHITE);
|
||||
}
|
||||
}
|
||||
|
||||
private record Example(@NotNull Scene scene, @NotNull Camera camera) {}
|
||||
}
|
125
src/main/java/eu/jonahbauer/raytracing/math/AABB.java
Normal file
@@ -0,0 +1,125 @@
|
||||
package eu.jonahbauer.raytracing.math;
|
||||
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
import java.util.Optional;
|
||||
|
||||
/**
|
||||
* An axis-aligned bounding box.
|
||||
*/
|
||||
public record AABB(@NotNull Vec3 min, @NotNull Vec3 max) {
|
||||
public static final AABB EMPTY = new AABB(Vec3.ZERO, Vec3.ZERO);
|
||||
public static final Comparator<AABB> X_AXIS = Comparator.comparing(AABB::min, Comparator.comparingDouble(Vec3::x));
|
||||
public static final Comparator<AABB> Y_AXIS = Comparator.comparing(AABB::min, Comparator.comparingDouble(Vec3::y));
|
||||
public static final Comparator<AABB> Z_AXIS = Comparator.comparing(AABB::min, Comparator.comparingDouble(Vec3::z));
|
||||
|
||||
public AABB {
|
||||
var a = min;
|
||||
var b = max;
|
||||
min = Vec3.min(a, b);
|
||||
max = Vec3.max(a, b);
|
||||
}
|
||||
|
||||
public AABB(@NotNull Range x, @NotNull Range y, @NotNull Range z) {
|
||||
this(new Vec3(x.min(), y.min(), z.min()), new Vec3(x.max(), y.max(), z.max()));
|
||||
}
|
||||
|
||||
public static @NotNull Optional<AABB> getBoundingBox(@NotNull List<? extends @NotNull Hittable> objects) {
|
||||
var bbox = (AABB) null;
|
||||
for (var object : objects) {
|
||||
bbox = bbox == null ? object.getBoundingBox() : bbox.expand(object.getBoundingBox());
|
||||
}
|
||||
return Optional.ofNullable(bbox);
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the range of x values}
|
||||
*/
|
||||
public @NotNull Range x() {
|
||||
return new Range(min.x(), max.x());
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the range of y values}
|
||||
*/
|
||||
public @NotNull Range y() {
|
||||
return new Range(min.y(), max.y());
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the range of z values}
|
||||
*/
|
||||
public @NotNull Range z() {
|
||||
return new Range(min.z(), max.z());
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the center of this bounding box}
|
||||
*/
|
||||
public @NotNull Vec3 center() {
|
||||
return Vec3.average(min, max, 2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Expands this bounding box to include the other bounding box.
|
||||
* @param box a bounding box
|
||||
* @return the expanded bounding box
|
||||
*/
|
||||
public @NotNull AABB expand(@NotNull AABB box) {
|
||||
return new AABB(Vec3.min(this.min, box.min), Vec3.max(this.max, box.max));
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests whether the {@code ray} intersects this bounding box withing the {@code range}
|
||||
* @param ray a ray
|
||||
* @param range a range of valid {@code t}s
|
||||
* @return {@code true} iff the ray intersects this bounding box, {@code false} otherwise
|
||||
*/
|
||||
public boolean hit(@NotNull Ray ray, @NotNull Range range) {
|
||||
var origin = ray.origin();
|
||||
var direction = ray.direction();
|
||||
var invDirection = direction.inv();
|
||||
|
||||
// calculate t values for intersection points of ray with planes through min
|
||||
var tmin = intersect(min(), origin, invDirection);
|
||||
// calculate t values for intersection points of ray with planes through max
|
||||
var tmax = intersect(max(), origin, invDirection);
|
||||
|
||||
// determine range of t for which the ray is inside this voxel
|
||||
double tlmax = Double.NEGATIVE_INFINITY; // lower limit maximum
|
||||
double tumin = Double.POSITIVE_INFINITY; // upper limit minimum
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
// classify t values as lower or upper limit based on ray direction
|
||||
if (direction.get(i) >= 0) {
|
||||
// min is lower limit and max is upper limit
|
||||
if (tmin[i] > tlmax) tlmax = tmin[i];
|
||||
if (tmax[i] < tumin) tumin = tmax[i];
|
||||
} else {
|
||||
// max is lower limit and min is upper limit
|
||||
if (tmax[i] > tlmax) tlmax = tmax[i];
|
||||
if (tmin[i] < tumin) tumin = tmin[i];
|
||||
}
|
||||
}
|
||||
|
||||
return tlmax < tumin && tumin >= range.min() && tlmax <= range.max();
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the {@code t} values of the intersections of a ray with the axis-aligned planes through a point.
|
||||
* @param corner the point
|
||||
* @param origin the origin point of the ray
|
||||
* @param invDirection the {@linkplain Vec3#inv() inverted} direction of the ray
|
||||
* @return a three-element array of the {@code t} values of the intersection with the yz-, xz- and xy-plane through {@code corner}
|
||||
*/
|
||||
public static double @NotNull[] intersect(@NotNull Vec3 corner, @NotNull Vec3 origin, @NotNull Vec3 invDirection) {
|
||||
return new double[] {
|
||||
(corner.x() - origin.x()) * invDirection.x(),
|
||||
(corner.y() - origin.y()) * invDirection.y(),
|
||||
(corner.z() - origin.z()) * invDirection.z(),
|
||||
};
|
||||
}
|
||||
}
|
@@ -1,20 +0,0 @@
|
||||
package eu.jonahbauer.raytracing.math;
|
||||
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
public record BoundingBox(@NotNull Vec3 min, @NotNull Vec3 max) {
|
||||
public BoundingBox {
|
||||
var a = min;
|
||||
var b = max;
|
||||
min = Vec3.min(a, b);
|
||||
max = Vec3.max(a, b);
|
||||
}
|
||||
|
||||
public @NotNull Vec3 center() {
|
||||
return Vec3.average(min, max, 2);
|
||||
}
|
||||
|
||||
public @NotNull BoundingBox expand(@NotNull BoundingBox box) {
|
||||
return new BoundingBox(Vec3.min(this.min, box.min), Vec3.max(this.max, box.max));
|
||||
}
|
||||
}
|
@@ -1,259 +0,0 @@
|
||||
package eu.jonahbauer.raytracing.math;
|
||||
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
import org.jetbrains.annotations.Nullable;
|
||||
|
||||
import java.util.*;
|
||||
import java.util.function.Predicate;
|
||||
|
||||
public final class Octree<T> {
|
||||
private final @NotNull NodeStorage<T> storage;
|
||||
|
||||
public Octree(@NotNull Vec3 center, double dimension) {
|
||||
this.storage = new NodeStorage<>(center, dimension);
|
||||
}
|
||||
|
||||
public void add(@NotNull BoundingBox bbox, T object) {
|
||||
storage.add(new Entry<>(bbox, object));
|
||||
}
|
||||
|
||||
/**
|
||||
* Use HERO algorithms to find all elements that could possibly be hit by the given ray.
|
||||
* @see <a href="https://doi.org/10.1007/978-3-642-76298-7_3">
|
||||
* Agate, M., Grimsdale, R.L., Lister, P.F. (1991).
|
||||
* The HERO Algorithm for Ray-Tracing Octrees.
|
||||
* In: Grimsdale, R.L., Straßer, W. (eds) Advances in Computer Graphics Hardware IV. Eurographic Seminars. Springer, Berlin, Heidelberg.</a>
|
||||
*/
|
||||
public void hit(@NotNull Ray ray, @NotNull Predicate<T> action) {
|
||||
storage.hit(ray, action);
|
||||
}
|
||||
|
||||
public static int getOctantIndex(@NotNull Vec3 center, @NotNull Vec3 pos) {
|
||||
return (pos.x() < center.x() ? 0 : 1)
|
||||
| (pos.y() < center.y() ? 0 : 2)
|
||||
| (pos.z() < center.z() ? 0 : 4);
|
||||
|
||||
}
|
||||
|
||||
private static sealed abstract class Storage<T> {
|
||||
protected static final int LIST_SIZE_LIMIT = 32;
|
||||
|
||||
protected final @NotNull Vec3 center;
|
||||
protected final double dimension;
|
||||
|
||||
public Storage(@NotNull Vec3 center, double dimension) {
|
||||
this.center = Objects.requireNonNull(center);
|
||||
this.dimension = dimension;
|
||||
}
|
||||
|
||||
public abstract @NotNull Storage<T> add(@NotNull Entry<T> entry);
|
||||
|
||||
protected abstract boolean hit(@NotNull Ray ray, @NotNull Predicate<T> action);
|
||||
|
||||
protected boolean hit0(@NotNull Ray ray, int vmask, double tmin, double tmax, @NotNull Predicate<T> action) {
|
||||
return hit(ray, action);
|
||||
}
|
||||
}
|
||||
|
||||
private static final class ListStorage<T> extends Storage<T> {
|
||||
private final @NotNull List<Entry<T>> list = new ArrayList<>();
|
||||
|
||||
public ListStorage(@NotNull Vec3 center, double dimension) {
|
||||
super(center, dimension);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Storage<T> add(@NotNull Entry<T> entry) {
|
||||
if (list.size() >= LIST_SIZE_LIMIT) {
|
||||
var node = new NodeStorage<T>(center, dimension);
|
||||
list.forEach(node::add);
|
||||
node.add(entry);
|
||||
return node;
|
||||
} else {
|
||||
list.add(entry);
|
||||
return this;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
protected boolean hit(@NotNull Ray ray, @NotNull Predicate<T> action) {
|
||||
var hit = false;
|
||||
for (Entry<T> entry : list) {
|
||||
hit |= action.test(entry.object());
|
||||
}
|
||||
return hit;
|
||||
}
|
||||
}
|
||||
|
||||
private static final class NodeStorage<T> extends Storage<T> {
|
||||
@SuppressWarnings("unchecked")
|
||||
private final @Nullable Storage<T> @NotNull[] octants = new Storage[8];
|
||||
private final @NotNull List<Entry<T>> list = new ArrayList<>(); // track elements spanning multiple octants separately
|
||||
|
||||
public NodeStorage(@NotNull Vec3 center, double dimension) {
|
||||
super(center, dimension);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Storage<T> add(@NotNull Entry<T> entry) {
|
||||
var index = getOctantIndex(center, entry.bbox().min());
|
||||
if (index != getOctantIndex(center, entry.bbox().max())) {
|
||||
list.add(entry);
|
||||
} else {
|
||||
var subnode = octants[index];
|
||||
if (subnode == null) {
|
||||
subnode = newOctant(index);
|
||||
}
|
||||
octants[index] = subnode.add(entry);
|
||||
}
|
||||
return this;
|
||||
}
|
||||
|
||||
private @NotNull Storage<T> newOctant(int index) {
|
||||
var newSize = 0.5 * dimension;
|
||||
var newCenter = this.center
|
||||
.plus(new Vec3(
|
||||
(index & 1) == 0 ? -newSize : newSize,
|
||||
(index & 2) == 0 ? -newSize : newSize,
|
||||
(index & 4) == 0 ? -newSize : newSize
|
||||
));
|
||||
return new ListStorage<>(newCenter, newSize);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected boolean hit(@NotNull Ray ray, @NotNull Predicate<T> action) {
|
||||
int vmask = (ray.direction().x() < 0 ? 1 : 0)
|
||||
| (ray.direction().y() < 0 ? 2 : 0)
|
||||
| (ray.direction().z() < 0 ? 4 : 0);
|
||||
|
||||
var min = center.minus(dimension, dimension, dimension);
|
||||
var max = center.plus(dimension, dimension, dimension);
|
||||
|
||||
// calculate t values for intersection points of ray with planes through min
|
||||
var tmin = calculatePlaneIntersections(min, ray);
|
||||
// calculate t values for intersection points of ray with planes through max
|
||||
var tmax = calculatePlaneIntersections(max, ray);
|
||||
|
||||
// determine range of t for which the ray is inside this voxel
|
||||
double tlmax = Double.NEGATIVE_INFINITY; // lower limit maximum
|
||||
double tumin = Double.POSITIVE_INFINITY; // upper limit minimum
|
||||
for (int i = 0; i < 3; i++) {
|
||||
// classify t values as lower or upper limit based on vmask
|
||||
if ((vmask & (1 << i)) == 0) {
|
||||
// min is lower limit and max is upper limit
|
||||
tlmax = Math.max(tlmax, tmin[i]);
|
||||
tumin = Math.min(tumin, tmax[i]);
|
||||
} else {
|
||||
// max is lower limit and min is upper limit
|
||||
tlmax = Math.max(tlmax, tmax[i]);
|
||||
tumin = Math.min(tumin, tmin[i]);
|
||||
}
|
||||
}
|
||||
|
||||
var hit = tlmax < tumin;
|
||||
if (!hit) return false;
|
||||
|
||||
return hit0(ray, vmask, tlmax, tumin, action);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected boolean hit0(@NotNull Ray ray, int vmask, double tmin, double tmax, @NotNull Predicate<T> action) {
|
||||
if (tmax < 0) return false;
|
||||
|
||||
// check for hit
|
||||
var hit = false;
|
||||
|
||||
// process entries spanning multiple children
|
||||
for (Entry<T> entry : list) {
|
||||
hit |= action.test(entry.object());
|
||||
}
|
||||
|
||||
// t values for intersection points of ray with planes through center
|
||||
var tmid = calculatePlaneIntersections(center, ray);
|
||||
// masks of planes in the order of intersection, e.g. [2, 1, 4] for a ray intersection y = center.y() then x = center.x() then z = center.z()
|
||||
var masklist = calculateMasklist(tmid);
|
||||
// the first child to be hit by the ray assuming a ray with positive x, y and z coordinates
|
||||
var childmask = (tmid[0] < tmin ? 1 : 0)
|
||||
| (tmid[1] < tmin ? 2 : 0)
|
||||
| (tmid[2] < tmin ? 4 : 0);
|
||||
// the last child to be hit by the ray assuming a ray with positive x, y and z coordinates
|
||||
var lastmask = (tmid[0] < tmax ? 1 : 0)
|
||||
| (tmid[1] < tmax ? 2 : 0)
|
||||
| (tmid[2] < tmax ? 4 : 0);
|
||||
|
||||
var childTmin = tmin;
|
||||
|
||||
int i = 0;
|
||||
while (true) {
|
||||
// use vmask to nullify the assumption of a positive ray made for childmask
|
||||
var child = octants[childmask ^ vmask];
|
||||
|
||||
// calculate t value for exit of child
|
||||
double childTmax;
|
||||
if (childmask == lastmask) {
|
||||
// last child shares tmax
|
||||
childTmax = tmax;
|
||||
} else {
|
||||
// determine next child
|
||||
while ((masklist[i] & childmask) != 0) {
|
||||
i++;
|
||||
}
|
||||
childmask = childmask | masklist[i];
|
||||
// tmax of current child is the t value for the intersection with the plane dividing the current and next child
|
||||
childTmax = tmid[Integer.numberOfTrailingZeros(masklist[i])];
|
||||
}
|
||||
|
||||
// process child
|
||||
var childHit = child != null && child.hit0(ray, vmask, childTmin, childTmax, action);
|
||||
hit |= childHit;
|
||||
|
||||
// break after last child has been processed or a hit has been found
|
||||
if (childTmax == tmax || childHit) break;
|
||||
|
||||
// tmin of next child is tmax of current child
|
||||
childTmin = childTmax;
|
||||
}
|
||||
|
||||
return hit;
|
||||
}
|
||||
|
||||
private double @NotNull [] calculatePlaneIntersections(@NotNull Vec3 position, @NotNull Ray ray) {
|
||||
return new double[] {
|
||||
(position.x() - ray.origin().x()) / ray.direction().x(),
|
||||
(position.y() - ray.origin().y()) / ray.direction().y(),
|
||||
(position.z() - ray.origin().z()) / ray.direction().z(),
|
||||
};
|
||||
}
|
||||
|
||||
private static final int[][] MASKLISTS = new int[][] {
|
||||
{1, 2, 4},
|
||||
{1, 4, 2},
|
||||
{4, 1, 2},
|
||||
{2, 1, 4},
|
||||
{2, 4, 1},
|
||||
{4, 2, 1}
|
||||
};
|
||||
|
||||
private static int @NotNull [] calculateMasklist(double @NotNull[] tmid) {
|
||||
if (tmid[0] < tmid[1]) {
|
||||
if (tmid[1] < tmid[2]) {
|
||||
return MASKLISTS[0]; // {1, 2, 4}
|
||||
} else if (tmid[0] < tmid[2]) {
|
||||
return MASKLISTS[1]; // {1, 4, 2}
|
||||
} else {
|
||||
return MASKLISTS[2]; // {4, 1, 2}
|
||||
}
|
||||
} else {
|
||||
if (tmid[0] < tmid[2]) {
|
||||
return MASKLISTS[3]; // {2, 1, 4}
|
||||
} else if (tmid[1] < tmid[2]) {
|
||||
return MASKLISTS[4]; // {2, 4, 1}
|
||||
} else {
|
||||
return MASKLISTS[5]; // {4, 2, 1}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private record Entry<T>(@NotNull BoundingBox bbox, T object) { }
|
||||
}
|
@@ -16,4 +16,8 @@ public record Range(double min, double max) {
|
||||
public boolean surrounds(double value) {
|
||||
return min < value && value < max;
|
||||
}
|
||||
|
||||
public double size() {
|
||||
return max - min;
|
||||
}
|
||||
}
|
||||
|
@@ -11,10 +11,6 @@ public record Ray(@NotNull Vec3 origin, @NotNull Vec3 direction) {
|
||||
}
|
||||
|
||||
public @NotNull Vec3 at(double t) {
|
||||
return new Vec3(
|
||||
origin().x() + t * direction.x(),
|
||||
origin().y() + t * direction.y(),
|
||||
origin().z() + t * direction.z()
|
||||
);
|
||||
return Vec3.fma(t, direction, origin);
|
||||
}
|
||||
}
|
||||
|
@@ -3,6 +3,9 @@ package eu.jonahbauer.raytracing.math;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
import static eu.jonahbauer.raytracing.Main.DEBUG;
|
||||
|
||||
public record Vec3(double x, double y, double z) {
|
||||
public static final Vec3 ZERO = new Vec3(0, 0, 0);
|
||||
@@ -13,26 +16,63 @@ public record Vec3(double x, double y, double z) {
|
||||
public static final Vec3 UNIT_Z = new Vec3(0, 0, 1);
|
||||
|
||||
public Vec3 {
|
||||
assert Double.isFinite(x) && Double.isFinite(y) && Double.isFinite(z) : "x, y and z must be finite";
|
||||
if (DEBUG) {
|
||||
if (!Double.isFinite(x) || !Double.isFinite(y) || !Double.isFinite(z)) {
|
||||
throw new IllegalArgumentException("x, y and z must be finite");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static @NotNull Vec3 random() {
|
||||
return random(false);
|
||||
/**
|
||||
* {@return a uniformly random unit vector}
|
||||
*/
|
||||
public static @NotNull Vec3 random(@NotNull RandomGenerator random) {
|
||||
double x, y, z;
|
||||
double squared;
|
||||
do {
|
||||
x = Math.fma(2, random.nextDouble(), -1);
|
||||
y = Math.fma(2, random.nextDouble(), -1);
|
||||
z = Math.fma(2, random.nextDouble(), -1);
|
||||
squared = x * x + y * y + z * z;
|
||||
} while (squared > 1);
|
||||
var factor = 1 / Math.sqrt(squared);
|
||||
return new Vec3(x * factor, y * factor, z * factor);
|
||||
}
|
||||
|
||||
public static @NotNull Vec3 random(boolean unit) {
|
||||
var random = new Vec3(
|
||||
2 * Math.random() - 1,
|
||||
2 * Math.random() - 1,
|
||||
2 * Math.random() - 1
|
||||
);
|
||||
return unit ? random.unit() : random;
|
||||
/**
|
||||
* {@return a uniformly random unit vector on the opposite hemisphere of the given <code>direction</code>}
|
||||
*/
|
||||
public static @NotNull Vec3 randomOppositeHemisphere(@NotNull RandomGenerator random, @NotNull Vec3 direction) {
|
||||
double x, y, z;
|
||||
double squared;
|
||||
do {
|
||||
x = Math.fma(2, random.nextDouble(), -1);
|
||||
y = Math.fma(2, random.nextDouble(), -1);
|
||||
z = Math.fma(2, random.nextDouble(), -1);
|
||||
squared = x * x + y * y + z * z;
|
||||
} while (squared > 1 || direction.x() * x + direction.y() * y + direction.z() * z >= 0);
|
||||
var factor = 1 / Math.sqrt(squared);
|
||||
return new Vec3(x * factor, y * factor, z * factor);
|
||||
}
|
||||
|
||||
/**
|
||||
* Reflects a vector on the given {@code normal} vector.
|
||||
* @param vec a vector
|
||||
* @param normal the surface normal (must be a unit vector)
|
||||
* @return the reflected vector
|
||||
*/
|
||||
public static @NotNull Vec3 reflect(@NotNull Vec3 vec, @NotNull Vec3 normal) {
|
||||
return vec.minus(normal.times(2 * normal.times(vec)));
|
||||
var factor = - 2 * normal.times(vec);
|
||||
return Vec3.fma(factor, normal, vec);
|
||||
}
|
||||
|
||||
/**
|
||||
* Refracts a vector on the given {@code normal} vector.
|
||||
* @param vec a vector
|
||||
* @param normal the surface normal (must be a unit vector)
|
||||
* @param ri the refractive index
|
||||
* @return the refracted vector
|
||||
*/
|
||||
public static @NotNull Optional<Vec3> refract(@NotNull Vec3 vec, @NotNull Vec3 normal, double ri) {
|
||||
vec = vec.unit();
|
||||
var cosTheta = Math.min(- vec.times(normal), 1.0);
|
||||
@@ -44,24 +84,49 @@ public record Vec3(double x, double y, double z) {
|
||||
return Optional.of(rOutPerp.plus(rOutParallel));
|
||||
}
|
||||
|
||||
/**
|
||||
* Rotates a vector around an {@code axis}.
|
||||
* @param vec a vector
|
||||
* @param axis the rotation axis
|
||||
* @param angle the angle in radians
|
||||
* @return the rotated vector
|
||||
*/
|
||||
public static @NotNull Vec3 rotate(@NotNull Vec3 vec, @NotNull Vec3 axis, double angle) {
|
||||
Vec3 vxp = axis.cross(vec);
|
||||
Vec3 vxvxp = axis.cross(vxp);
|
||||
return vec.plus(vxp.times(Math.sin(angle))).plus(vxvxp.times(1 - Math.cos(angle)));
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the euclidean distance between two vectors}
|
||||
* @param a a vector
|
||||
* @param b another vector
|
||||
*/
|
||||
public static double distance(@NotNull Vec3 a, @NotNull Vec3 b) {
|
||||
return a.minus(b).length();
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes a running average of vectors.
|
||||
* @param current the current running average
|
||||
* @param next the next vector
|
||||
* @param index the one-based index of the next vector
|
||||
* @return the new running average
|
||||
*/
|
||||
public static @NotNull Vec3 average(@NotNull Vec3 current, @NotNull Vec3 next, int index) {
|
||||
var factor = 1d / index;
|
||||
return new Vec3(
|
||||
current.x() + (next.x() - current.x()) / index,
|
||||
current.y() + (next.y() - current.y()) / index,
|
||||
current.z() + (next.z() - current.z()) / index
|
||||
Math.fma(factor, next.x() - current.x(), current.x()),
|
||||
Math.fma(factor, next.y() - current.y(), current.y()),
|
||||
Math.fma(factor, next.z() - current.z(), current.z())
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return a component-wise maximum vector}
|
||||
* @param a a vector
|
||||
* @param b another vector
|
||||
*/
|
||||
public static @NotNull Vec3 max(@NotNull Vec3 a, @NotNull Vec3 b) {
|
||||
return new Vec3(
|
||||
Math.max(a.x(), b.x()),
|
||||
@@ -70,6 +135,11 @@ public record Vec3(double x, double y, double z) {
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return a component-wise minimum vector}
|
||||
* @param a a vector
|
||||
* @param b another vector
|
||||
*/
|
||||
public static @NotNull Vec3 min(@NotNull Vec3 a, @NotNull Vec3 b) {
|
||||
return new Vec3(
|
||||
Math.min(a.x(), b.x()),
|
||||
@@ -78,6 +148,24 @@ public record Vec3(double x, double y, double z) {
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return <code>a * b + c</code>}
|
||||
* @param a scalar
|
||||
* @param b a vector
|
||||
* @param c another vector
|
||||
*/
|
||||
public static @NotNull Vec3 fma(double a, @NotNull Vec3 b, @NotNull Vec3 c) {
|
||||
return new Vec3(
|
||||
Math.fma(a, b.x(), c.x()),
|
||||
Math.fma(a, b.y(), c.y()),
|
||||
Math.fma(a, b.z(), c.z())
|
||||
);
|
||||
}
|
||||
|
||||
public static double tripleProduct(@NotNull Vec3 a, @NotNull Vec3 b, @NotNull Vec3 c) {
|
||||
return a.x * b.y * c.z + a.y * b.z * c.x + a.z * b.x * c.y - c.x * b.y * a.z - c.y * b.z * a.x - c.z * b.x * a.y;
|
||||
}
|
||||
|
||||
public @NotNull Vec3 plus(double x, double y, double z) {
|
||||
return new Vec3(this.x + x, this.y + y, this.z + z);
|
||||
}
|
||||
@@ -86,53 +174,122 @@ public record Vec3(double x, double y, double z) {
|
||||
return new Vec3(this.x - x, this.y - y, this.z - z);
|
||||
}
|
||||
|
||||
public @NotNull Vec3 plus(@NotNull Vec3 b) {
|
||||
return new Vec3(this.x + b.x, this.y + b.y, this.z + b.z);
|
||||
/**
|
||||
* Adds a vector to this vector
|
||||
* @param other a vector
|
||||
* @return the sum of this and the other vector
|
||||
*/
|
||||
public @NotNull Vec3 plus(@NotNull Vec3 other) {
|
||||
return new Vec3(this.x + other.x, this.y + other.y, this.z + other.z);
|
||||
}
|
||||
|
||||
public @NotNull Vec3 minus(@NotNull Vec3 b) {
|
||||
return new Vec3(this.x - b.x, this.y - b.y, this.z - b.z);
|
||||
/**
|
||||
* Subtracts a vector from this vector
|
||||
* @param other a vector
|
||||
* @return the difference of this and the other vector
|
||||
*/
|
||||
public @NotNull Vec3 minus(@NotNull Vec3 other) {
|
||||
return new Vec3(this.x - other.x, this.y - other.y, this.z - other.z);
|
||||
}
|
||||
|
||||
public double times(@NotNull Vec3 b) {
|
||||
return this.x * b.x + this.y * b.y + this.z * b.z;
|
||||
/**
|
||||
* Computes the scalar product of this and another vector
|
||||
* @param other a vector
|
||||
* @return the scalar product
|
||||
*/
|
||||
public double times(@NotNull Vec3 other) {
|
||||
return this.x * other.x + this.y * other.y + this.z * other.z;
|
||||
}
|
||||
|
||||
public @NotNull Vec3 times(double b) {
|
||||
return new Vec3(this.x * b, this.y * b, this.z * b);
|
||||
/**
|
||||
* Multiplies this vector with a scalar
|
||||
* @param t a scalar
|
||||
* @return the product of this vector and the scalar
|
||||
*/
|
||||
public @NotNull Vec3 times(double t) {
|
||||
return new Vec3(this.x * t, this.y * t, this.z * t);
|
||||
}
|
||||
|
||||
/**
|
||||
* Negates this vector.
|
||||
* {@return the negated vector}
|
||||
*/
|
||||
public @NotNull Vec3 neg() {
|
||||
return new Vec3(-x, -y, -z);
|
||||
}
|
||||
|
||||
public @NotNull Vec3 cross(@NotNull Vec3 b) {
|
||||
/**
|
||||
* Inverts each component of this vector.
|
||||
* @return the inverted vector.
|
||||
*/
|
||||
public @NotNull Vec3 inv() {
|
||||
return new Vec3(1 / x, 1 / y, 1 / z);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the cross-product of this and another vector
|
||||
* @param other a vector
|
||||
* @return the cross-product
|
||||
*/
|
||||
public @NotNull Vec3 cross(@NotNull Vec3 other) {
|
||||
return new Vec3(
|
||||
this.y() * b.z() - b.y() * this.z(),
|
||||
this.z() * b.x() - b.z() * this.x(),
|
||||
this.x() * b.y() - b.x() * this.y()
|
||||
Math.fma(this.y, other.z, - other.y * this.z),
|
||||
Math.fma(this.z, other.x, - other.z * this.x),
|
||||
Math.fma(this.x, other.y, - other.x * this.y)
|
||||
);
|
||||
}
|
||||
|
||||
public @NotNull Vec3 div(double b) {
|
||||
return new Vec3(this.x / b, this.y / b, this.z / b);
|
||||
/**
|
||||
* Divides this vector by a scalar
|
||||
* @param t a scalar
|
||||
* @return this vector divided by the scalar
|
||||
*/
|
||||
public @NotNull Vec3 div(double t) {
|
||||
return new Vec3(this.x / t, this.y / t, this.z / t);
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the squared length of this vector}
|
||||
*/
|
||||
public double squared() {
|
||||
return this.x * this.x + this.y * this.y + this.z * this.z;
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the length of this vector}
|
||||
*/
|
||||
public double length() {
|
||||
return Math.sqrt(squared());
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return whether this vector is near zero}
|
||||
*/
|
||||
public boolean isNearZero() {
|
||||
var s = 1e-8;
|
||||
return Math.abs(x) < s && Math.abs(y) < s && Math.abs(z) < s;
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return a unit vector with the same direction as this vector}
|
||||
*/
|
||||
public @NotNull Vec3 unit() {
|
||||
return div(length());
|
||||
var squared = squared();
|
||||
if (squared == 1) return this;
|
||||
return div(Math.sqrt(squared));
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the n-th component of this vector}
|
||||
* @param axis the component index
|
||||
*/
|
||||
public double get(int axis) {
|
||||
return switch (axis) {
|
||||
case 0 -> x;
|
||||
case 1 -> y;
|
||||
case 2 -> z;
|
||||
default -> throw new IndexOutOfBoundsException(axis);
|
||||
};
|
||||
}
|
||||
|
||||
public @NotNull Vec3 withX(double x) {
|
||||
@@ -146,4 +303,9 @@ public record Vec3(double x, double y, double z) {
|
||||
public @NotNull Vec3 withZ(double z) {
|
||||
return new Vec3(x, y, z);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull String toString() {
|
||||
return "(" + x + "," + y + "," + z + ")";
|
||||
}
|
||||
}
|
||||
|
@@ -1,6 +1,7 @@
|
||||
package eu.jonahbauer.raytracing.render;
|
||||
|
||||
import eu.jonahbauer.raytracing.render.canvas.Canvas;
|
||||
import eu.jonahbauer.raytracing.render.canvas.Image;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.io.*;
|
||||
@@ -10,6 +11,7 @@ import java.nio.file.Path;
|
||||
import java.util.zip.CRC32;
|
||||
import java.util.zip.CheckedOutputStream;
|
||||
import java.util.zip.DeflaterOutputStream;
|
||||
import java.util.zip.InflaterInputStream;
|
||||
|
||||
public enum ImageFormat {
|
||||
PPM {
|
||||
@@ -41,6 +43,7 @@ public enum ImageFormat {
|
||||
private static final int IHDR_TYPE = 0x49484452;
|
||||
private static final int IDAT_TYPE = 0x49444154;
|
||||
private static final int IEND_TYPE = 0x49454E44;
|
||||
private static final int IEND_CRC = 0xAE426082;
|
||||
|
||||
@Override
|
||||
public void write(@NotNull Canvas image, @NotNull OutputStream out) throws IOException {
|
||||
@@ -92,7 +95,7 @@ public enum ImageFormat {
|
||||
}
|
||||
|
||||
var bytes = baos.toByteArray();
|
||||
data.writeInt(bytes.length);
|
||||
data.writeInt(bytes.length - 4); // don't include type in length
|
||||
data.write(bytes);
|
||||
data.writeInt((int) crc.getChecksum().getValue());
|
||||
}
|
||||
@@ -101,7 +104,7 @@ public enum ImageFormat {
|
||||
private void writeIEND(@NotNull Canvas image, @NotNull DataOutputStream data) throws IOException {
|
||||
data.writeInt(0);
|
||||
data.writeInt(IEND_TYPE);
|
||||
data.writeInt(0);
|
||||
data.writeInt(IEND_CRC);
|
||||
}
|
||||
|
||||
private static class NoCloseDataOutputStream extends DataOutputStream {
|
||||
|
@@ -3,6 +3,8 @@ package eu.jonahbauer.raytracing.render.camera;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public interface Camera {
|
||||
/**
|
||||
* {@return the width of this camera in pixels}
|
||||
@@ -16,7 +18,13 @@ public interface Camera {
|
||||
|
||||
/**
|
||||
* Casts a ray through the given pixel.
|
||||
* @param x the pixel x coordinate
|
||||
* @param y the pixel y coordinate
|
||||
* @param i the subpixel x coordinate
|
||||
* @param j the subpixel y coordinate
|
||||
* @param n the subpixel count (per side)
|
||||
* @param random a random number generator
|
||||
* @return a new ray
|
||||
*/
|
||||
@NotNull Ray cast(int x, int y);
|
||||
@NotNull Ray cast(int x, int y, int i, int j, int n, @NotNull RandomGenerator random);
|
||||
}
|
||||
|
@@ -6,6 +6,7 @@ import org.jetbrains.annotations.NotNull;
|
||||
import org.jetbrains.annotations.Nullable;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public final class SimpleCamera implements Camera {
|
||||
// image size
|
||||
@@ -59,7 +60,7 @@ public final class SimpleCamera implements Camera {
|
||||
|
||||
this.pixel00 = origin.plus(direction.times(builder.focusDistance))
|
||||
.minus(u.times(0.5 * viewportWidth)).minus(v.times(0.5 * viewportHeight))
|
||||
.plus(pixelU.div(2)).plus(pixelV.div(2));
|
||||
.plus(pixelU.times(.5)).plus(pixelV.times(.5));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -78,13 +79,20 @@ public final class SimpleCamera implements Camera {
|
||||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
* @param x {@inheritDoc}
|
||||
* @param y {@inheritDoc}
|
||||
* @param i {@inheritDoc}
|
||||
* @param j {@inheritDoc}
|
||||
* @param n {@inheritDoc}
|
||||
* @param random {@inheritDoc}
|
||||
*/
|
||||
public @NotNull Ray cast(int x, int y) {
|
||||
@Override
|
||||
public @NotNull Ray cast(int x, int y, int i, int j, int n, @NotNull RandomGenerator random) {
|
||||
Objects.checkIndex(x, width);
|
||||
Objects.checkIndex(y, height);
|
||||
|
||||
var origin = getRayOrigin();
|
||||
var target = getRayTarget(x, y);
|
||||
var origin = getRayOrigin(random);
|
||||
var target = getRayTarget(x, y, i, j, n, random);
|
||||
return new Ray(origin, target.minus(origin));
|
||||
}
|
||||
|
||||
@@ -93,12 +101,12 @@ public final class SimpleCamera implements Camera {
|
||||
* radius {@link #blurRadius} centered on the camera position and perpendicular to the direction to simulate depth
|
||||
* of field.
|
||||
*/
|
||||
private @NotNull Vec3 getRayOrigin() {
|
||||
private @NotNull Vec3 getRayOrigin(@NotNull RandomGenerator random) {
|
||||
if (blurRadius <= 0) return origin;
|
||||
|
||||
while (true) {
|
||||
var du = 2 * Math.random() - 1;
|
||||
var dv = 2 * Math.random() - 1;
|
||||
var du = Math.fma(2, random.nextDouble(), -1);
|
||||
var dv = Math.fma(2, random.nextDouble(), -1);
|
||||
if (du * du + dv * dv >= 1) continue;
|
||||
|
||||
var ru = blurRadius * du;
|
||||
@@ -115,9 +123,10 @@ public final class SimpleCamera implements Camera {
|
||||
/**
|
||||
* {@return the target vector for a ray through the given pixel} The position is randomized within the pixel.
|
||||
*/
|
||||
private @NotNull Vec3 getRayTarget(int x, int y) {
|
||||
double dx = x + Math.random() - 0.5;
|
||||
double dy = y + Math.random() - 0.5;
|
||||
private @NotNull Vec3 getRayTarget(int x, int y, int i, int j, int n, @NotNull RandomGenerator random) {
|
||||
var factor = 1d / n;
|
||||
var dx = x + Math.fma(factor, i + random.nextDouble(), -0.5);
|
||||
var dy = y + Math.fma(factor, j + random.nextDouble(), -0.5);
|
||||
return pixel00.plus(pixelU.times(dx)).plus(pixelV.times(dy));
|
||||
}
|
||||
|
||||
|
@@ -1,6 +1,6 @@
|
||||
package eu.jonahbauer.raytracing.render.canvas;
|
||||
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.function.Function;
|
||||
|
@@ -1,8 +1,9 @@
|
||||
package eu.jonahbauer.raytracing.render.canvas;
|
||||
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.awt.image.BufferedImage;
|
||||
import java.util.Objects;
|
||||
|
||||
public final class Image implements Canvas {
|
||||
@@ -21,6 +22,16 @@ public final class Image implements Canvas {
|
||||
this.data = new Color[height][width];
|
||||
}
|
||||
|
||||
public Image(@NotNull BufferedImage image) {
|
||||
this(image.getWidth(), image.getHeight());
|
||||
|
||||
for (int y = 0; y < height; y++) {
|
||||
for (int x = 0; x < width; x++) {
|
||||
this.data[y][x] = new Color(image.getRGB(x, y));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getWidth() {
|
||||
return width;
|
||||
|
@@ -1,6 +1,6 @@
|
||||
package eu.jonahbauer.raytracing.render.canvas;
|
||||
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import javax.swing.*;
|
||||
|
@@ -2,25 +2,37 @@ package eu.jonahbauer.raytracing.render.material;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Texture;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public record DielectricMaterial(double refractionIndex, @NotNull Texture texture) implements Material {
|
||||
public DielectricMaterial(double refractionIndex) {
|
||||
this(refractionIndex, Color.WHITE);
|
||||
}
|
||||
|
||||
public DielectricMaterial {
|
||||
Objects.requireNonNull(texture, "texture");
|
||||
}
|
||||
|
||||
public record DielectricMaterial(double refractionIndex) implements Material {
|
||||
@Override
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit) {
|
||||
var ri = hit.frontFace() ? (1 / refractionIndex) : refractionIndex;
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit, @NotNull RandomGenerator random) {
|
||||
var ri = hit.isFrontFace() ? (1 / refractionIndex) : refractionIndex;
|
||||
|
||||
var cosTheta = Math.min(- ray.direction().unit().times(hit.normal()), 1.0);
|
||||
var reflectance = reflectance(cosTheta);
|
||||
var reflect = reflectance > Math.random();
|
||||
var reflect = reflectance > random.nextDouble();
|
||||
|
||||
var newDirection = (reflect ? Optional.<Vec3>empty() : Vec3.refract(ray.direction(), hit.normal(), ri))
|
||||
.orElseGet(() -> Vec3.reflect(ray.direction(), hit.normal()));
|
||||
|
||||
return Optional.of(new ScatterResult(new Ray(hit.position(), newDirection), Color.WHITE));
|
||||
var attenuation = texture.get(hit);
|
||||
return Optional.of(new SpecularScatterResult(attenuation, new Ray(hit.position(), newDirection)));
|
||||
}
|
||||
|
||||
private double reflectance(double cos) {
|
||||
|
@@ -1,20 +1,22 @@
|
||||
package eu.jonahbauer.raytracing.render.material;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Texture;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public record DiffuseLight(@NotNull Color emit) implements Material {
|
||||
public record DiffuseLight(@NotNull Texture texture) implements Material {
|
||||
@Override
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit) {
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit, @NotNull RandomGenerator random) {
|
||||
return Optional.empty();
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Color emitted(@NotNull HitResult hit) {
|
||||
return emit;
|
||||
return texture.get(hit);
|
||||
}
|
||||
}
|
||||
|
@@ -0,0 +1,68 @@
|
||||
package eu.jonahbauer.raytracing.render.material;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Texture;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
import org.jetbrains.annotations.Nullable;
|
||||
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public final class DirectionalMaterial implements Material {
|
||||
private final @Nullable Material front;
|
||||
private final @Nullable Material back;
|
||||
|
||||
private final @NotNull Texture texture;
|
||||
|
||||
public DirectionalMaterial(@Nullable Material front, @Nullable Material back) {
|
||||
if (front == null && back == null) throw new IllegalArgumentException("front and back must not both be null");
|
||||
this.front = front;
|
||||
this.back = back;
|
||||
this.texture = new DirectionalTexture(
|
||||
front != null ? front.texture() : null,
|
||||
back != null ? back.texture() : null
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Texture texture() {
|
||||
return texture;
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit, @NotNull RandomGenerator random) {
|
||||
if (hit.isFrontFace()) {
|
||||
if (front != null) return front.scatter(ray, hit, random);
|
||||
} else {
|
||||
if (back != null) return back.scatter(ray, hit, random);
|
||||
}
|
||||
// let the ray pass through without obstruction
|
||||
return Optional.of(new SpecularScatterResult(Color.WHITE, new Ray(ray.at(hit.t()), ray.direction())));
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Color emitted(@NotNull HitResult hit) {
|
||||
if (hit.isFrontFace()) {
|
||||
if (front != null) return front.emitted(hit);
|
||||
} else {
|
||||
if (back != null) return back.emitted(hit);
|
||||
}
|
||||
return Material.super.emitted(hit);
|
||||
}
|
||||
|
||||
private record DirectionalTexture(@Nullable Texture front, @Nullable Texture back) implements Texture {
|
||||
|
||||
@Override
|
||||
public @NotNull Color get(double u, double v, @NotNull Vec3 p) {
|
||||
throw new UnsupportedOperationException();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean isUVRequired() {
|
||||
return front() != null && front().isUVRequired() || back() != null && back().isUVRequired();
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,16 +1,23 @@
|
||||
package eu.jonahbauer.raytracing.render.material;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.renderer.pdf.SphereProbabilityDensityFunction;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Texture;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public record IsotropicMaterial(@NotNull Color albedo) implements Material{
|
||||
public record IsotropicMaterial(@NotNull Color albedo) implements Material {
|
||||
@Override
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit) {
|
||||
return Optional.of(new ScatterResult(new Ray(hit.position(), Vec3.random(true)), albedo()));
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit, @NotNull RandomGenerator random) {
|
||||
return Optional.of(new PdfScatterResult(albedo(), new SphereProbabilityDensityFunction()));
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Texture texture() {
|
||||
return albedo();
|
||||
}
|
||||
}
|
||||
|
@@ -1,25 +1,23 @@
|
||||
package eu.jonahbauer.raytracing.render.material;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.renderer.pdf.CosineProbabilityDensityFunction;
|
||||
import eu.jonahbauer.raytracing.render.texture.Texture;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public record LambertianMaterial(@NotNull Color albedo) implements Material {
|
||||
public record LambertianMaterial(@NotNull Texture texture) implements Material {
|
||||
public LambertianMaterial {
|
||||
Objects.requireNonNull(albedo, "albedo");
|
||||
Objects.requireNonNull(texture, "texture");
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit) {
|
||||
var newDirection = hit.normal().plus(Vec3.random(true));
|
||||
if (newDirection.isNearZero()) newDirection = hit.normal();
|
||||
|
||||
var scattered = new Ray(hit.position(), newDirection);
|
||||
return Optional.of(new ScatterResult(scattered, albedo));
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit, @NotNull RandomGenerator random) {
|
||||
var attenuation = texture.get(hit);
|
||||
return Optional.of(new PdfScatterResult(attenuation, new CosineProbabilityDensityFunction(hit.normal())));
|
||||
}
|
||||
}
|
||||
|
@@ -1,25 +1,71 @@
|
||||
package eu.jonahbauer.raytracing.render.material;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.renderer.pdf.ProbabilityDensityFunction;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Texture;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public interface Material {
|
||||
|
||||
@NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit);
|
||||
/**
|
||||
* {@return the texture associated with this material}
|
||||
*/
|
||||
@NotNull Texture texture();
|
||||
|
||||
/**
|
||||
* Scatters a light ray after it hit a surface.
|
||||
* @param ray the incoming light ray
|
||||
* @param hit information about the light ray hitting some object
|
||||
* @param random a random number generator
|
||||
* @return a {@code ScatterResult} if the ray is scattered or an {@linkplain Optional#empty() empty optional} if the
|
||||
* ray is absorbed.
|
||||
*/
|
||||
@NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit, @NotNull RandomGenerator random);
|
||||
|
||||
/**
|
||||
* {@return the color emitted for a given hit}
|
||||
* @implSpec the default implementation returns {@linkplain Color#BLACK black}, i.e. no emission
|
||||
*/
|
||||
default @NotNull Color emitted(@NotNull HitResult hit) {
|
||||
return Color.BLACK;
|
||||
}
|
||||
|
||||
record ScatterResult(@NotNull Ray ray, @NotNull Color attenuation) {
|
||||
public ScatterResult {
|
||||
Objects.requireNonNull(ray, "ray");
|
||||
/**
|
||||
* The result of a {@linkplain Material#scatter(Ray, HitResult, RandomGenerator) scattering operation}.
|
||||
*/
|
||||
sealed interface ScatterResult {}
|
||||
|
||||
/**
|
||||
* The result of a specular {@linkplain #scatter(Ray, HitResult, RandomGenerator) scattering operation}. A
|
||||
* specular is a scattering operation with a very small number of possible scattered rays (like a
|
||||
* perfect reflection which only has one possible scattered ray).
|
||||
* @param attenuation the attenuation of the scattered light ray
|
||||
* @param ray the scattered light ray
|
||||
*/
|
||||
record SpecularScatterResult(@NotNull Color attenuation, @NotNull Ray ray) implements ScatterResult {
|
||||
public SpecularScatterResult {
|
||||
Objects.requireNonNull(attenuation, "attenuation");
|
||||
Objects.requireNonNull(ray, "ray");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* The result of a probability density function based
|
||||
* {@linkplain #scatter(Ray, HitResult, RandomGenerator) scattering operation}. A probability density function
|
||||
* based scattering operation uses a probability density function to determine the scatter direction.
|
||||
* @param attenuation the attenuation of the scattered light ray
|
||||
* @param pdf the probability density function
|
||||
*/
|
||||
record PdfScatterResult(@NotNull Color attenuation, @NotNull ProbabilityDensityFunction pdf) implements ScatterResult {
|
||||
public PdfScatterResult {
|
||||
Objects.requireNonNull(attenuation, "attenuation");
|
||||
Objects.requireNonNull(pdf, "pdf");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -2,30 +2,32 @@ package eu.jonahbauer.raytracing.render.material;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Texture;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public record MetallicMaterial(@NotNull Color albedo, double fuzz) implements Material {
|
||||
public record MetallicMaterial(@NotNull Texture texture, double fuzz) implements Material {
|
||||
|
||||
public MetallicMaterial(@NotNull Color albedo) {
|
||||
this(albedo, 0);
|
||||
public MetallicMaterial(@NotNull Texture texture) {
|
||||
this(texture, 0);
|
||||
}
|
||||
|
||||
public MetallicMaterial {
|
||||
Objects.requireNonNull(albedo, "albedo");
|
||||
Objects.requireNonNull(texture, "texture");
|
||||
if (fuzz < 0 || !Double.isFinite(fuzz)) throw new IllegalArgumentException("fuzz must be non-negative");
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit) {
|
||||
public @NotNull Optional<ScatterResult> scatter(@NotNull Ray ray, @NotNull HitResult hit, @NotNull RandomGenerator random) {
|
||||
var newDirection = Vec3.reflect(ray.direction(), hit.normal());
|
||||
if (fuzz > 0) {
|
||||
newDirection = newDirection.unit().plus(Vec3.random(true).times(fuzz));
|
||||
newDirection = Vec3.fma(fuzz, Vec3.random(random), newDirection.unit());
|
||||
}
|
||||
return Optional.of(new ScatterResult(new Ray(hit.position(), newDirection), albedo));
|
||||
var attenuation = texture.get(hit);
|
||||
return Optional.of(new SpecularScatterResult(attenuation, new Ray(hit.position(), newDirection)));
|
||||
}
|
||||
}
|
||||
|
@@ -2,18 +2,24 @@ package eu.jonahbauer.raytracing.render.renderer;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Range;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.material.Material;
|
||||
import eu.jonahbauer.raytracing.render.renderer.pdf.TargetingProbabilityDensityFunction;
|
||||
import eu.jonahbauer.raytracing.render.renderer.pdf.MixtureProbabilityDensityFunction;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import eu.jonahbauer.raytracing.render.camera.Camera;
|
||||
import eu.jonahbauer.raytracing.render.canvas.Canvas;
|
||||
import eu.jonahbauer.raytracing.scene.Scene;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.function.Function;
|
||||
import java.util.Random;
|
||||
import java.util.SplittableRandom;
|
||||
import java.util.random.RandomGenerator;
|
||||
import java.util.stream.IntStream;
|
||||
import java.util.stream.LongStream;
|
||||
|
||||
import static eu.jonahbauer.raytracing.Main.DEBUG;
|
||||
|
||||
public final class SimpleRenderer implements Renderer {
|
||||
private final int samplesPerPixel;
|
||||
private final int sqrtSamplesPerPixel;
|
||||
private final int maxDepth;
|
||||
private final double gamma;
|
||||
|
||||
@@ -29,7 +35,7 @@ public final class SimpleRenderer implements Renderer {
|
||||
}
|
||||
|
||||
private SimpleRenderer(@NotNull Builder builder) {
|
||||
this.samplesPerPixel = builder.samplesPerPixel;
|
||||
this.sqrtSamplesPerPixel = (int) Math.sqrt(builder.samplesPerPixel);
|
||||
this.maxDepth = builder.maxDepth;
|
||||
this.gamma = builder.gamma;
|
||||
|
||||
@@ -37,6 +43,9 @@ public final class SimpleRenderer implements Renderer {
|
||||
this.iterative = builder.iterative;
|
||||
}
|
||||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
@Override
|
||||
public void render(@NotNull Camera camera, @NotNull Scene scene, @NotNull Canvas canvas) {
|
||||
if (canvas.getWidth() != camera.getWidth() || canvas.getHeight() != camera.getHeight()) {
|
||||
@@ -44,67 +53,159 @@ public final class SimpleRenderer implements Renderer {
|
||||
}
|
||||
|
||||
if (iterative) {
|
||||
// render one sample after the other
|
||||
for (int i = 1 ; i <= samplesPerPixel; i++) {
|
||||
var sample = i;
|
||||
getPixelStream(camera.getWidth(), camera.getHeight(), parallel).forEach(pixel -> {
|
||||
var y = (int) (pixel >> 32);
|
||||
var x = (int) pixel;
|
||||
var ray = camera.cast(x, y);
|
||||
var c = getColor(scene, ray);
|
||||
canvas.set(x, y, Color.average(canvas.get(x, y), c, sample));
|
||||
renderIterative(camera, scene, canvas);
|
||||
} else {
|
||||
renderNonIterative(camera, scene, canvas);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Renders the {@code scene} as seen by the {@code camera} to the {@code canvas}, taking one sample per pixel at
|
||||
* a time and updating the canvas after each sample.
|
||||
*/
|
||||
private void renderIterative(@NotNull Camera camera, @NotNull Scene scene, @NotNull Canvas canvas) {
|
||||
var random = new Random(0);
|
||||
|
||||
// render one sample after the other
|
||||
int i = 0;
|
||||
for (int sj = 0; sj < sqrtSamplesPerPixel; sj++) {
|
||||
for (int si = 0; si < sqrtSamplesPerPixel; si++) {
|
||||
var sample = ++i;
|
||||
var sif = si;
|
||||
var sjf = sj;
|
||||
getScanlineStream(camera.getHeight(), parallel).forEach(y -> {
|
||||
for (int x = 0; x < camera.getWidth(); x++) {
|
||||
var ray = camera.cast(x, y, sif, sjf, sqrtSamplesPerPixel, random);
|
||||
var c = getColor(scene, ray, random);
|
||||
canvas.set(x, y, Color.average(canvas.get(x, y), c, sample));
|
||||
}
|
||||
});
|
||||
}
|
||||
// apply gamma correction
|
||||
getPixelStream(camera.getWidth(), camera.getHeight(), parallel).forEach(pixel -> {
|
||||
var y = (int) (pixel >> 32);
|
||||
var x = (int) pixel;
|
||||
canvas.set(x, y, Color.gamma(canvas.get(x, y), gamma));
|
||||
});
|
||||
} else {
|
||||
// render one pixel after the other
|
||||
getPixelStream(camera.getWidth(), camera.getHeight(), parallel).forEach(pixel -> {
|
||||
var y = (int) (pixel >> 32);
|
||||
var x = (int) pixel;
|
||||
}
|
||||
|
||||
// apply gamma correction
|
||||
getScanlineStream(camera.getHeight(), parallel).forEach(y -> {
|
||||
for (int x = 0; x < camera.getWidth(); x++) {
|
||||
canvas.set(x, y, Color.gamma(canvas.get(x, y), gamma));
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Renders the {@code scene} as seen by the {@code camera} to the {@code canvas}, taking some amount of samples
|
||||
* per pixel and updating the canvas after each pixel.
|
||||
*/
|
||||
private void renderNonIterative(@NotNull Camera camera, @NotNull Scene scene, @NotNull Canvas canvas) {
|
||||
var splittable = new SplittableRandom(0);
|
||||
// render one pixel after the other
|
||||
getScanlineStream(camera.getHeight(), parallel).forEach(y -> {
|
||||
var random = splittable.split();
|
||||
for (int x = 0; x < camera.getWidth(); x++) {
|
||||
var color = Color.BLACK;
|
||||
for (int i = 1; i <= samplesPerPixel; i++) {
|
||||
var ray = camera.cast(x, y);
|
||||
var c = getColor(scene, ray);
|
||||
color = Color.average(color, c, i);
|
||||
int i = 0;
|
||||
for (int sj = 0; sj < sqrtSamplesPerPixel; sj++) {
|
||||
for (int si = 0; si < sqrtSamplesPerPixel; si++) {
|
||||
var ray = camera.cast(x, y, si, sj, sqrtSamplesPerPixel, random);
|
||||
if (DEBUG) {
|
||||
System.out.println("Casting ray " + ray + " through pixel (" + x + "," + y + ") at subpixel (" + si + "," + sj + ")...");
|
||||
}
|
||||
var c = getColor(scene, ray, random);
|
||||
color = Color.average(color, c, ++i);
|
||||
}
|
||||
}
|
||||
canvas.set(x, y, Color.gamma(color, gamma));
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the color of the given ray in the given scene}
|
||||
*/
|
||||
private @NotNull Color getColor(@NotNull Scene scene, @NotNull Ray ray) {
|
||||
return getColor0(scene, ray, maxDepth);
|
||||
private @NotNull Color getColor(@NotNull Scene scene, @NotNull Ray ray, @NotNull RandomGenerator random) {
|
||||
return getColor0(scene, ray, maxDepth, random);
|
||||
}
|
||||
|
||||
private @NotNull Color getColor0(@NotNull Scene scene, @NotNull Ray ray, int depth) {
|
||||
private @NotNull Color getColor0(@NotNull Scene scene, @NotNull Ray ray, int depth, @NotNull RandomGenerator random) {
|
||||
var color = Color.BLACK;
|
||||
var attenuation = Color.WHITE;
|
||||
|
||||
while (depth-- > 0) {
|
||||
var optional = scene.hit(ray, new Range(0.001, Double.POSITIVE_INFINITY));
|
||||
var optional = scene.hit(ray);
|
||||
if (optional.isEmpty()) {
|
||||
color = Color.add(color, Color.multiply(attenuation, scene.getBackgroundColor(ray)));
|
||||
var background = scene.getBackgroundColor(ray);
|
||||
color = Color.add(color, Color.multiply(attenuation, background));
|
||||
if (DEBUG) {
|
||||
System.out.println(" Hit background: " + background);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
var hit = optional.get();
|
||||
if (DEBUG) {
|
||||
System.out.println(" Hit " + hit.target() + " at t=" + hit.t() + " (" + hit.position() + ")");
|
||||
}
|
||||
var material = hit.material();
|
||||
var emitted = material.emitted(hit);
|
||||
var scatter = material.scatter(ray, hit);
|
||||
if (DEBUG && !Color.BLACK.equals(emitted)) {
|
||||
System.out.println(" Emitted: " + emitted);
|
||||
}
|
||||
|
||||
var result = material.scatter(ray, hit, random);
|
||||
color = Color.add(color, Color.multiply(attenuation, emitted));
|
||||
|
||||
if (scatter.isEmpty()) break;
|
||||
attenuation = Color.multiply(attenuation, scatter.get().attenuation());
|
||||
ray = scatter.get().ray();
|
||||
if (result.isEmpty()) {
|
||||
if (DEBUG) {
|
||||
System.out.println(" Absorbed");
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
switch (result.get()) {
|
||||
case Material.SpecularScatterResult(var a, var scattered) -> {
|
||||
attenuation = Color.multiply(attenuation, a);
|
||||
ray = scattered;
|
||||
|
||||
if (DEBUG) {
|
||||
System.out.println(" Specular scattering with albedo " + a);
|
||||
}
|
||||
}
|
||||
case Material.PdfScatterResult(var a, var pdf) -> {
|
||||
if (scene.getTargets() == null) {
|
||||
attenuation = Color.multiply(attenuation, a);
|
||||
ray = new Ray(hit.position(), pdf.generate(random));
|
||||
|
||||
if (DEBUG) {
|
||||
System.out.println(" Pdf scattering with albedo " + a);
|
||||
}
|
||||
} else {
|
||||
var mixed = new MixtureProbabilityDensityFunction(new TargetingProbabilityDensityFunction(hit.position(), scene.getTargets()), pdf, 0.5);
|
||||
var direction = mixed.generate(random).unit();
|
||||
|
||||
var idealPdf = pdf.value(direction);
|
||||
var actualPdf = mixed.value(direction);
|
||||
if (actualPdf == 0) break; // when actualPdf is 0, the ray should have never been generated by mixed.generate
|
||||
|
||||
var factor = idealPdf / actualPdf;
|
||||
|
||||
attenuation = Color.multiply(attenuation, Color.multiply(a, factor));
|
||||
ray = new Ray(hit.position(), direction);
|
||||
|
||||
if (DEBUG) {
|
||||
System.out.println(" Pdf scattering with albedo " + a + " and factor " + factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
System.out.println(" Combined color is " + color);
|
||||
System.out.println(" Combined attenuation is " + attenuation);
|
||||
System.out.println(" New ray is " + ray);
|
||||
}
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
System.out.println(" Final color is " + color);
|
||||
}
|
||||
|
||||
return color;
|
||||
@@ -114,10 +215,8 @@ public final class SimpleRenderer implements Renderer {
|
||||
* {@return a stream of the pixels in a canvas with the given size} The pixels {@code x} and {@code y} coordinate
|
||||
* are encoded in the longs lower and upper 32 bits respectively.
|
||||
*/
|
||||
private static @NotNull LongStream getPixelStream(int width, int height, boolean parallel) {
|
||||
var stream = IntStream.range(0, height)
|
||||
.mapToObj(y -> IntStream.range(0, width).mapToLong(x -> (long) y << 32 | x))
|
||||
.flatMapToLong(Function.identity());
|
||||
private static @NotNull IntStream getScanlineStream(int height, boolean parallel) {
|
||||
var stream = IntStream.range(0, height);
|
||||
return parallel ? stream.parallel() : stream;
|
||||
}
|
||||
|
||||
|
@@ -0,0 +1,27 @@
|
||||
package eu.jonahbauer.raytracing.render.renderer.pdf;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public record CosineProbabilityDensityFunction(@NotNull Vec3 normal) implements ProbabilityDensityFunction {
|
||||
|
||||
public CosineProbabilityDensityFunction {
|
||||
Objects.requireNonNull(normal, "normal");
|
||||
normal = normal.unit();
|
||||
}
|
||||
|
||||
@Override
|
||||
public double value(@NotNull Vec3 direction) {
|
||||
var cos = normal.times(direction);
|
||||
return Math.max(0, cos / Math.PI);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Vec3 generate(@NotNull RandomGenerator random) {
|
||||
var out = normal().plus(Vec3.random(random));
|
||||
return out.isNearZero() ? normal() : out;
|
||||
}
|
||||
}
|
@@ -0,0 +1,46 @@
|
||||
package eu.jonahbauer.raytracing.render.renderer.pdf;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
/**
|
||||
* Mixes between two probability density functions (pdf) using a weight. When the weight is closer to zero, the
|
||||
* influence of the second pdf is stronger. When the weight is closer to one, the influence of the first pdf is stronger.
|
||||
* @param a the first probability density function
|
||||
* @param b the second probability density function
|
||||
* @param weight a weight in the range [0, 1]
|
||||
*/
|
||||
public record MixtureProbabilityDensityFunction(
|
||||
@NotNull ProbabilityDensityFunction a,
|
||||
@NotNull ProbabilityDensityFunction b,
|
||||
double weight
|
||||
) implements ProbabilityDensityFunction {
|
||||
public MixtureProbabilityDensityFunction(@NotNull ProbabilityDensityFunction a, @NotNull ProbabilityDensityFunction b) {
|
||||
this(a, b, 0.5);
|
||||
}
|
||||
|
||||
public MixtureProbabilityDensityFunction {
|
||||
Objects.requireNonNull(a);
|
||||
Objects.requireNonNull(b);
|
||||
weight = Math.clamp(weight, 0, 1);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double value(@NotNull Vec3 direction) {
|
||||
var v = a.value(direction);
|
||||
var w = b.value(direction);
|
||||
return Math.fma(weight, v, Math.fma(-weight, w, w));
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Vec3 generate(@NotNull RandomGenerator random) {
|
||||
if (random.nextDouble() < weight) {
|
||||
return a.generate(random);
|
||||
} else {
|
||||
return b.generate(random);
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,25 @@
|
||||
package eu.jonahbauer.raytracing.render.renderer.pdf;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
/**
|
||||
* A probability density function used for sampling random directions when scattering a ray.
|
||||
*/
|
||||
public interface ProbabilityDensityFunction {
|
||||
|
||||
/**
|
||||
* {@return the value of this probability density function at the given point}
|
||||
* @param direction the direction
|
||||
*/
|
||||
double value(@NotNull Vec3 direction);
|
||||
|
||||
/**
|
||||
* Generates a random direction based on this probability density function.
|
||||
* @param random a random number generator
|
||||
* @return the random direction
|
||||
*/
|
||||
@NotNull Vec3 generate(@NotNull RandomGenerator random);
|
||||
}
|
@@ -0,0 +1,22 @@
|
||||
package eu.jonahbauer.raytracing.render.renderer.pdf;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
/**
|
||||
* A probability density function sampling the sphere uniformly.
|
||||
*/
|
||||
public record SphereProbabilityDensityFunction() implements ProbabilityDensityFunction {
|
||||
|
||||
@Override
|
||||
public double value(@NotNull Vec3 direction) {
|
||||
return 1 / (4 * Math.PI);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Vec3 generate(@NotNull RandomGenerator random) {
|
||||
return Vec3.random(random);
|
||||
}
|
||||
}
|
@@ -0,0 +1,41 @@
|
||||
package eu.jonahbauer.raytracing.render.renderer.pdf;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.scene.Target;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
/**
|
||||
* A probability density function targeting a target.
|
||||
* @see Target
|
||||
*/
|
||||
public final class TargetingProbabilityDensityFunction implements ProbabilityDensityFunction {
|
||||
private final @NotNull Vec3 origin;
|
||||
private final @NotNull List<@NotNull Target> targets;
|
||||
|
||||
public TargetingProbabilityDensityFunction(@NotNull Vec3 origin, @NotNull List<@NotNull Target> targets) {
|
||||
this.origin = Objects.requireNonNull(origin, "origin");
|
||||
this.targets = new ArrayList<>(targets);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double value(@NotNull Vec3 direction) {
|
||||
var weight = 1d / targets.size();
|
||||
var sum = 0.0;
|
||||
|
||||
for (var target : targets) {
|
||||
sum = Math.fma(weight, target.getProbabilityDensity(origin, direction), sum);
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Vec3 generate(@NotNull RandomGenerator random) {
|
||||
return targets.get(random.nextInt(targets.size())).getTargetingDirection(origin, random);
|
||||
}
|
||||
}
|
@@ -0,0 +1,21 @@
|
||||
package eu.jonahbauer.raytracing.render.texture;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
public record CheckerTexture(double scale, @NotNull Texture even, @NotNull Texture odd) implements Texture {
|
||||
|
||||
@Override
|
||||
public @NotNull Color get(double u, double v, @NotNull Vec3 p) {
|
||||
var x = (int) Math.floor(p.x() / scale);
|
||||
var y = (int) Math.floor(p.y() / scale);
|
||||
var z = (int) Math.floor(p.z() / scale);
|
||||
var even = (x + y + z) % 2 == 0;
|
||||
return even ? even().get(u, v, p) : odd().get(u, v, p);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean isUVRequired() {
|
||||
return even.isUVRequired() || odd.isUVRequired();
|
||||
}
|
||||
}
|
@@ -1,10 +1,15 @@
|
||||
package eu.jonahbauer.raytracing.render;
|
||||
package eu.jonahbauer.raytracing.render.texture;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.scene.SkyBox;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
public record Color(double r, double g, double b) {
|
||||
import static eu.jonahbauer.raytracing.Main.DEBUG;
|
||||
|
||||
public record Color(double r, double g, double b) implements Texture, SkyBox {
|
||||
public static final @NotNull Color BLACK = new Color(0.0, 0.0, 0.0);
|
||||
public static final @NotNull Color WHITE = new Color(1.0, 1.0, 1.0);
|
||||
public static final @NotNull Color RED = new Color(1.0, 0.0, 0.0);
|
||||
@@ -25,6 +30,10 @@ public record Color(double r, double g, double b) {
|
||||
return new Color(a.r() * b.r(), a.g() * b.g(), a.b() * b.b());
|
||||
}
|
||||
|
||||
public static @NotNull Color multiply(@NotNull Color a, double b) {
|
||||
return new Color(a.r() * b, a.g() * b, a.b() * b);
|
||||
}
|
||||
|
||||
public static @NotNull Color add(@NotNull Color a, @NotNull Color b) {
|
||||
return new Color(a.r() + b.r(), a.g() + b.g(), a.b() + b.b());
|
||||
}
|
||||
@@ -43,10 +52,11 @@ public record Color(double r, double g, double b) {
|
||||
}
|
||||
|
||||
public static @NotNull Color average(@NotNull Color current, @NotNull Color next, int index) {
|
||||
var factor = 1d / index;
|
||||
return new Color(
|
||||
current.r() + (next.r() - current.r()) / index,
|
||||
current.g() + (next.g() - current.g()) / index,
|
||||
current.b() + (next.b() - current.b()) / index
|
||||
Math.fma(factor, next.r() - current.r(), current.r()),
|
||||
Math.fma(factor, next.g() - current.g(), current.g()),
|
||||
Math.fma(factor, next.b() - current.b(), current.b())
|
||||
);
|
||||
}
|
||||
|
||||
@@ -68,12 +78,25 @@ public record Color(double r, double g, double b) {
|
||||
}
|
||||
}
|
||||
|
||||
public Color {}
|
||||
public Color(int rgb) {
|
||||
this((rgb >> 16) & 0xFF, (rgb >> 8) & 0xFF, rgb & 0xFF);
|
||||
}
|
||||
|
||||
public Color(int red, int green, int blue) {
|
||||
this(red / 255f, green / 255f, blue / 255f);
|
||||
}
|
||||
|
||||
public Color {
|
||||
if (DEBUG) {
|
||||
if (!Double.isFinite(r) || !Double.isFinite(g) || !Double.isFinite(b)) {
|
||||
throw new IllegalArgumentException("r, g and b must be finite");
|
||||
}
|
||||
if (r < 0 || g < 0 || b < 0) {
|
||||
throw new IllegalArgumentException("r, g and b must be non-negative");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public int red() {
|
||||
return toInt(r);
|
||||
}
|
||||
@@ -86,7 +109,22 @@ public record Color(double r, double g, double b) {
|
||||
return toInt(b);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Color get(double u, double v, @NotNull Vec3 p) {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Color getColor(@NotNull Ray ray) {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean isUVRequired() {
|
||||
return false;
|
||||
}
|
||||
|
||||
private static int toInt(double value) {
|
||||
return Math.max(0, Math.min(255, (int) (255.99 * value)));
|
||||
return Math.clamp((int) (255.99 * value), 0, 255);
|
||||
}
|
||||
}
|
@@ -0,0 +1,43 @@
|
||||
package eu.jonahbauer.raytracing.render.texture;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.canvas.Image;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import javax.imageio.ImageIO;
|
||||
import java.awt.image.BufferedImage;
|
||||
import java.io.IOException;
|
||||
import java.io.UncheckedIOException;
|
||||
import java.util.Objects;
|
||||
|
||||
public record ImageTexture(@NotNull Image image) implements Texture {
|
||||
|
||||
public ImageTexture {
|
||||
Objects.requireNonNull(image, "image");
|
||||
}
|
||||
|
||||
public ImageTexture(@NotNull BufferedImage image) {
|
||||
this(new Image(image));
|
||||
}
|
||||
|
||||
public ImageTexture(@NotNull String path) {
|
||||
this(read(path));
|
||||
}
|
||||
|
||||
private static @NotNull BufferedImage read(@NotNull String path) {
|
||||
try (var in = Objects.requireNonNull(ImageTexture.class.getResourceAsStream(path))) {
|
||||
return ImageIO.read(in);
|
||||
} catch (IOException ex) {
|
||||
throw new UncheckedIOException(ex);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Color get(double u, double v, @NotNull Vec3 p) {
|
||||
u = Math.clamp(u, 0, 1);
|
||||
v = 1 - Math.clamp(v, 0, 1);
|
||||
int x = (int) (u * (image.getWidth() - 1));
|
||||
int y = (int) (v * (image.getHeight() - 1));
|
||||
return image.get(x, y);
|
||||
}
|
||||
}
|
@@ -0,0 +1,152 @@
|
||||
package eu.jonahbauer.raytracing.render.texture;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.Random;
|
||||
import java.util.function.DoubleFunction;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public final class PerlinTexture implements Texture {
|
||||
private static final int POINT_COUNT = 256;
|
||||
private static final @NotNull Random RANDOM = new Random();
|
||||
private static final @NotNull DoubleFunction<Color> GREYSCALE = t -> new Color(t, t, t);
|
||||
|
||||
private final double scale;
|
||||
private final int turbulence;
|
||||
private final @NotNull DoubleFunction<Color> color;
|
||||
|
||||
private final int mask;
|
||||
private final Vec3[] randvec;
|
||||
private final int[] permX;
|
||||
private final int[] permY;
|
||||
private final int[] permZ;
|
||||
|
||||
public PerlinTexture() {
|
||||
this(1.0);
|
||||
}
|
||||
|
||||
public PerlinTexture(double scale) {
|
||||
this(scale, 7);
|
||||
}
|
||||
|
||||
public PerlinTexture(double scale, int turbulence) {
|
||||
this(scale, turbulence, GREYSCALE);
|
||||
}
|
||||
|
||||
public PerlinTexture(double scale, int turbulence, @NotNull DoubleFunction<Color> color) {
|
||||
this(scale, turbulence, color, POINT_COUNT, RANDOM);
|
||||
}
|
||||
|
||||
public PerlinTexture(
|
||||
double scale, int turbulence, @NotNull DoubleFunction<Color> color,
|
||||
int count, @NotNull RandomGenerator random
|
||||
) {
|
||||
if ((count & (count - 1)) != 0) throw new IllegalArgumentException("count must be a power of two");
|
||||
if (turbulence <= 0) throw new IllegalArgumentException("turbulence must be positive");
|
||||
|
||||
this.scale = scale;
|
||||
this.turbulence = turbulence;
|
||||
this.color = Objects.requireNonNull(color, "color");
|
||||
|
||||
this.mask = count - 1;
|
||||
this.randvec = new Vec3[count];
|
||||
for (int i = 0; i < count; i++) {
|
||||
this.randvec[i] = Vec3.random(random);
|
||||
}
|
||||
this.permX = generatePerm(count, random);
|
||||
this.permY = generatePerm(count, random);
|
||||
this.permZ = generatePerm(count, random);
|
||||
}
|
||||
|
||||
private static int @NotNull[] generatePerm(int count, @NotNull RandomGenerator random) {
|
||||
int[] p = new int[count];
|
||||
for (int i = 0; i < count; i++) {
|
||||
p[i] = i;
|
||||
}
|
||||
permutate(p, random);
|
||||
return p;
|
||||
}
|
||||
|
||||
private static void permutate(int @NotNull[] p, @NotNull RandomGenerator random) {
|
||||
for (int i = p.length - 1; i > 0; i--) {
|
||||
int target = random.nextInt(i);
|
||||
int tmp = p[i];
|
||||
p[i] = p[target];
|
||||
p[target] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
public double getNoise(@NotNull Vec3 p) {
|
||||
var x = p.x() * scale;
|
||||
var y = p.y() * scale;
|
||||
var z = p.z() * scale;
|
||||
|
||||
var u = x - Math.floor(x);
|
||||
var v = y - Math.floor(y);
|
||||
var w = z - Math.floor(z);
|
||||
|
||||
int i = (int) Math.floor(x);
|
||||
int j = (int) Math.floor(y);
|
||||
int k = (int) Math.floor(z);
|
||||
|
||||
var c = new Vec3[8];
|
||||
for (int di = 0; di < 2; di++) {
|
||||
for (int dj = 0; dj < 2; dj++) {
|
||||
for (int dk = 0; dk < 2; dk++) {
|
||||
c[di << 2 | dj << 1 | dk] = randvec[permX[(i + di) & mask] ^ permY[(j + dj) & mask] ^ permZ[(k + dk) & mask]];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return interpolate(c, u, v, w);
|
||||
}
|
||||
|
||||
public double getNoise(@NotNull Vec3 p, int depth) {
|
||||
var accum = 0.0;
|
||||
var temp = p;
|
||||
var weight = 1.0;
|
||||
|
||||
for (int i = 0; i < depth; i++) {
|
||||
accum = Math.fma(weight, getNoise(temp), accum);
|
||||
weight *= 0.5;
|
||||
temp = temp.times(2);
|
||||
}
|
||||
|
||||
return accum;
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Color get(double u, double v, @NotNull Vec3 p) {
|
||||
var noise = getNoise(p, turbulence);
|
||||
var t = Math.fma(0.5, Math.sin(Math.PI * noise), 0.5);
|
||||
return color.apply(t);
|
||||
}
|
||||
|
||||
private static double interpolate(Vec3[] c, double u, double v, double w) {
|
||||
var uu = u * u * Math.fma(-2, u, 3);
|
||||
var vv = v * v * Math.fma(-2, v, 3);
|
||||
var ww = w * w * Math.fma(-2, w, 3);
|
||||
|
||||
var accum = 0.0;
|
||||
for (int i = 0; i < 2; i++) {
|
||||
for (int j = 0; j < 2; j++) {
|
||||
for (int k = 0; k < 2; k++) {
|
||||
var vec = c[i << 2 | j << 1 | k];
|
||||
var dot = (u - i) * vec.x() + (v - j) * vec.y() + (w - k) * vec.z();
|
||||
accum += Math.fma(i, uu, (1 - i) * (1 - uu))
|
||||
* Math.fma(j, vv, (1 - j) * (1 - vv))
|
||||
* Math.fma(k, ww, (1 - k) * (1 - ww))
|
||||
* dot;
|
||||
}
|
||||
}
|
||||
}
|
||||
return accum;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean isUVRequired() {
|
||||
return false;
|
||||
}
|
||||
}
|
@@ -0,0 +1,32 @@
|
||||
package eu.jonahbauer.raytracing.render.texture;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
public interface Texture {
|
||||
/**
|
||||
* {@return the color of <code>this</code> texture for a hit}
|
||||
*/
|
||||
default @NotNull Color get(@NotNull HitResult hit) {
|
||||
return get(hit.u(), hit.v(), hit.position());
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the color of <code>this</code> texture at the specified position}
|
||||
* @param u the texture u coordinate
|
||||
* @param v the texture v coordinate
|
||||
* @param p the position
|
||||
*/
|
||||
@NotNull Color get(double u, double v, @NotNull Vec3 p);
|
||||
|
||||
/**
|
||||
* Returns whether {@link #get(double, double, Vec3)} uses the {@code u} and/or {@code v} parameters.
|
||||
* When a texture indicates that the {@code u} and {@code v} coordinates are not required, the calculation may be
|
||||
* skipped and {@link Double#NaN} will be passed.
|
||||
* @return whether {@link #get(double, double, Vec3)} uses the {@code u} and/or {@code v} parameters
|
||||
*/
|
||||
default boolean isUVRequired() {
|
||||
return true;
|
||||
}
|
||||
}
|
@@ -1,23 +1,38 @@
|
||||
package eu.jonahbauer.raytracing.scene;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Range;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.material.Material;
|
||||
import eu.jonahbauer.raytracing.render.texture.Texture;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Objects;
|
||||
|
||||
/**
|
||||
* The result of a {@linkplain Hittable#hit(Ray, Range) hit}.
|
||||
* @param t the {@code t} value at which the hit occurs
|
||||
* @param position the position of the hit
|
||||
* @param normal the surface normal at the hit position
|
||||
* @param target the hit target (for debug purposes only)
|
||||
* @param material the material of the surface
|
||||
* @param u the texture u coordinate (or {@code Double.NaN} if the {@linkplain Material#texture() material's texture} does {@linkplain Texture#isUVRequired() not depend} on the uv-coordinates)
|
||||
* @param v the texture v coordinate (or {@code Double.NaN} if the {@linkplain Material#texture() material's texture} does {@linkplain Texture#isUVRequired() not depend} on the uv-coordinates)
|
||||
* @param isFrontFace whether the front or the back of the surface was it
|
||||
*/
|
||||
public record HitResult(
|
||||
double t,
|
||||
@NotNull Vec3 position,
|
||||
@NotNull Vec3 normal,
|
||||
@NotNull Material material,
|
||||
boolean frontFace
|
||||
double t, @NotNull Vec3 position, @NotNull Vec3 normal, @NotNull Hittable target,
|
||||
@NotNull Material material, double u, double v, boolean isFrontFace
|
||||
) implements Comparable<HitResult> {
|
||||
public HitResult {
|
||||
Objects.requireNonNull(position, "position");
|
||||
normal = normal.unit();
|
||||
}
|
||||
|
||||
public @NotNull HitResult withPositionAndNormal(@NotNull Vec3 position, @NotNull Vec3 normal) {
|
||||
return new HitResult(t, position, normal, target, material, u, v, isFrontFace);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int compareTo(@NotNull HitResult o) {
|
||||
return Double.compare(t, o.t);
|
||||
|
@@ -1,6 +1,6 @@
|
||||
package eu.jonahbauer.raytracing.scene;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.BoundingBox;
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Range;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
@@ -11,23 +11,38 @@ import org.jetbrains.annotations.NotNull;
|
||||
import java.util.Optional;
|
||||
|
||||
public interface Hittable {
|
||||
@NotNull Range FORWARD = new Range(0.001, Double.POSITIVE_INFINITY);
|
||||
|
||||
/**
|
||||
* {@return the value <code>t</code> such that <code>ray.at(t)</code> is the intersection of this shaped closest to
|
||||
* the ray origin, or <code>Double.NaN</code> if the ray does not intersect this shape}
|
||||
* @see #hit(Ray, Range)
|
||||
*/
|
||||
default @NotNull Optional<HitResult> hit(@NotNull Ray ray) {
|
||||
return hit(ray, FORWARD);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests whether the {@code ray} intersects {@code this} hittable.
|
||||
* <p>
|
||||
* The second parameter {@code range} allows the implementation to skip unnecessary calculations if it can
|
||||
* determine that a hit (if any) will fall outside the valid range of {@code t}s. The returned hit may still be
|
||||
* outside the valid range and has to be checked by the caller.
|
||||
* @param ray a ray
|
||||
* @param range the range of valid {@code t}s
|
||||
* @return the result of the hit test, containing (among others) the value {@code t} such that {@code ray.at(t)} is
|
||||
* a point on {@code this} hittable
|
||||
*/
|
||||
@NotNull Optional<HitResult> hit(@NotNull Ray ray, @NotNull Range range);
|
||||
|
||||
default @NotNull Optional<BoundingBox> getBoundingBox() {
|
||||
return Optional.empty();
|
||||
}
|
||||
/**
|
||||
* {@return the axis-aligned bounding box of this hittable}
|
||||
*/
|
||||
@NotNull AABB getBoundingBox();
|
||||
|
||||
default @NotNull Hittable translate(@NotNull Vec3 offset) {
|
||||
return new Translate(this, offset);
|
||||
return Translate.create(this, offset);
|
||||
}
|
||||
|
||||
default @NotNull Hittable rotateY(double angle) {
|
||||
return new RotateY(this, angle);
|
||||
return RotateY.create(this, angle);
|
||||
}
|
||||
}
|
||||
|
@@ -1,61 +1,57 @@
|
||||
package eu.jonahbauer.raytracing.scene;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import eu.jonahbauer.raytracing.scene.util.HittableBinaryTree;
|
||||
import eu.jonahbauer.raytracing.scene.util.HittableCollection;
|
||||
import eu.jonahbauer.raytracing.scene.util.HittableList;
|
||||
import eu.jonahbauer.raytracing.scene.util.HittableOctree;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
import org.jetbrains.annotations.Nullable;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
|
||||
public final class Scene extends HittableCollection {
|
||||
private final @NotNull HittableOctree octree;
|
||||
private final @NotNull HittableList list;
|
||||
private final @NotNull HittableCollection objects;
|
||||
private final @NotNull SkyBox background;
|
||||
|
||||
private final @Nullable List<@NotNull Target> targets;
|
||||
|
||||
public Scene(@NotNull List<? extends @NotNull Hittable> objects) {
|
||||
this(Color.BLACK, objects);
|
||||
this(objects, null);
|
||||
}
|
||||
|
||||
public Scene(@NotNull Color background, @NotNull List<? extends @NotNull Hittable> objects) {
|
||||
this(SkyBox.solid(background), objects);
|
||||
public Scene(@NotNull List<? extends @NotNull Hittable> objects, @Nullable List<? extends @NotNull Target> targets) {
|
||||
this(Color.BLACK, objects, targets);
|
||||
}
|
||||
|
||||
public Scene(@NotNull SkyBox background, @NotNull List<? extends @NotNull Hittable> objects) {
|
||||
var bounded = new ArrayList<Hittable>();
|
||||
var unbounded = new ArrayList<Hittable>();
|
||||
|
||||
objects.forEach(object -> {
|
||||
if (object.getBoundingBox().isPresent()) {
|
||||
bounded.add(object);
|
||||
} else {
|
||||
unbounded.add(object);
|
||||
}
|
||||
});
|
||||
|
||||
this.octree = new HittableOctree(bounded);
|
||||
this.list = new HittableList(unbounded);
|
||||
this.background = background;
|
||||
this(background, objects, null);
|
||||
}
|
||||
|
||||
public Scene(@NotNull Hittable @NotNull... objects) {
|
||||
this(List.of(objects));
|
||||
}
|
||||
public Scene(@NotNull SkyBox background, @NotNull List<? extends @NotNull Hittable> objects, @Nullable List<? extends @NotNull Target> targets) {
|
||||
var list = new ArrayList<Hittable>(objects.size() + (targets != null ? targets.size() : 0));
|
||||
list.addAll(objects);
|
||||
if (targets != null) list.addAll(targets);
|
||||
this.objects = new HittableBinaryTree(list);
|
||||
this.background = Objects.requireNonNull(background);
|
||||
|
||||
public Scene(@NotNull Color background, @NotNull Hittable @NotNull... objects) {
|
||||
this(background, List.of(objects));
|
||||
}
|
||||
|
||||
public Scene(@NotNull SkyBox background, @NotNull Hittable @NotNull... objects) {
|
||||
this(background, List.of(objects));
|
||||
this.targets = targets != null ? List.copyOf(targets) : null;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void hit(@NotNull Ray ray, @NotNull State state) {
|
||||
octree.hit(ray, state);
|
||||
list.hit(ray, state);
|
||||
objects.hit(ray, state);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull AABB getBoundingBox() {
|
||||
return objects.getBoundingBox();
|
||||
}
|
||||
|
||||
public @Nullable List<@NotNull Target> getTargets() {
|
||||
return targets;
|
||||
}
|
||||
|
||||
public @NotNull Color getBackgroundColor(@NotNull Ray ray) {
|
||||
|
@@ -1,7 +1,7 @@
|
||||
package eu.jonahbauer.raytracing.scene;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
@FunctionalInterface
|
||||
@@ -18,8 +18,4 @@ public interface SkyBox {
|
||||
return Color.lerp(bottom, top, alt / Math.PI + 0.5);
|
||||
};
|
||||
}
|
||||
|
||||
static @NotNull SkyBox solid(@NotNull Color color) {
|
||||
return _ -> color;
|
||||
}
|
||||
}
|
||||
|
39
src/main/java/eu/jonahbauer/raytracing/scene/Target.java
Normal file
@@ -0,0 +1,39 @@
|
||||
package eu.jonahbauer.raytracing.scene;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.renderer.pdf.TargetingProbabilityDensityFunction;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
/**
|
||||
* An interface for objects that can be targeted. A target can construct randomly distributed directions in which
|
||||
* it will be hit from a given origin.
|
||||
* @see TargetingProbabilityDensityFunction
|
||||
*/
|
||||
public interface Target extends Hittable {
|
||||
/**
|
||||
* Returns the probability density for a direction as sampled by {@link #getTargetingDirection(Vec3, RandomGenerator)}.
|
||||
* @param origin the origin
|
||||
* @param direction the direction
|
||||
* @return the probability density for a direction as sampled by {@link #getTargetingDirection(Vec3, RandomGenerator)}
|
||||
*/
|
||||
double getProbabilityDensity(@NotNull Vec3 origin, @NotNull Vec3 direction);
|
||||
|
||||
/**
|
||||
* {@return a vector targeting this hittable from the <code>origin</code>} The vector is chosen randomly.
|
||||
* @param origin the origin
|
||||
* @param random a random number generator
|
||||
*/
|
||||
@NotNull Vec3 getTargetingDirection(@NotNull Vec3 origin, @NotNull RandomGenerator random);
|
||||
|
||||
@Override
|
||||
default @NotNull Target translate(@NotNull Vec3 offset) {
|
||||
return (Target) Hittable.super.translate(offset);
|
||||
}
|
||||
|
||||
@Override
|
||||
default @NotNull Target rotateY(double angle) {
|
||||
return (Target) Hittable.super.rotateY(angle);
|
||||
}
|
||||
}
|
@@ -1,15 +1,16 @@
|
||||
package eu.jonahbauer.raytracing.scene.hittable2d;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.BoundingBox;
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.material.Material;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Optional;
|
||||
|
||||
public final class Ellipse extends Hittable2D {
|
||||
private final @NotNull AABB bbox;
|
||||
|
||||
public Ellipse(@NotNull Vec3 origin, @NotNull Vec3 u, @NotNull Vec3 v, @NotNull Material material) {
|
||||
super(origin, u, v, material);
|
||||
this.bbox = new AABB(origin.minus(u).minus(v), origin.plus(u).plus(v));
|
||||
}
|
||||
|
||||
@Override
|
||||
@@ -18,9 +19,7 @@ public final class Ellipse extends Hittable2D {
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<BoundingBox> getBoundingBox() {
|
||||
var a = origin.minus(u).minus(v);
|
||||
var b = origin.plus(u).plus(v);
|
||||
return Optional.of(new BoundingBox(Vec3.min(a, b), Vec3.max(a, b)));
|
||||
public @NotNull AABB getBoundingBox() {
|
||||
return bbox;
|
||||
}
|
||||
}
|
||||
|
@@ -46,19 +46,46 @@ public abstract class Hittable2D implements Hittable {
|
||||
var position = ray.at(t);
|
||||
var p = position.minus(origin);
|
||||
|
||||
if (!isInterior(p)) return Optional.empty();
|
||||
|
||||
var frontFace = denominator < 0;
|
||||
return Optional.of(new HitResult(t, position, frontFace ? normal : normal.neg(), material, frontFace));
|
||||
}
|
||||
|
||||
protected boolean isInterior(@NotNull Vec3 p) {
|
||||
var alpha = w.times(p.cross(v));
|
||||
var beta = w.times(u.cross(p));
|
||||
return isInterior(alpha, beta);
|
||||
if (!isInterior(alpha, beta)) return Optional.empty();
|
||||
|
||||
var frontFace = denominator < 0;
|
||||
return Optional.of(new HitResult(
|
||||
t, position, frontFace ? normal : normal.neg(), this,
|
||||
material, alpha, beta, frontFace
|
||||
));
|
||||
}
|
||||
|
||||
protected boolean isInterior(double alpha, double beta) {
|
||||
return false;
|
||||
protected double hit0(@NotNull Ray ray, @NotNull Range range) {
|
||||
var denominator = ray.direction().times(normal);
|
||||
if (Math.abs(denominator) < 1e-8) return Double.NaN; // parallel
|
||||
|
||||
var t = (d - ray.origin().times(normal)) / denominator;
|
||||
if (!range.surrounds(t)) return Double.NaN;
|
||||
|
||||
var position = ray.at(t);
|
||||
var p = position.minus(origin);
|
||||
|
||||
var alpha = Vec3.tripleProduct(w, p, v);
|
||||
var beta = Vec3.tripleProduct(w, u, p);
|
||||
if (!isInterior(alpha, beta)) return Double.NaN;
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
protected @NotNull Vec3 get(double alpha, double beta) {
|
||||
return new Vec3(
|
||||
Math.fma(beta, v.x(), Math.fma(alpha, u.x(), origin.x())),
|
||||
Math.fma(beta, v.y(), Math.fma(alpha, u.y(), origin.y())),
|
||||
Math.fma(beta, v.z(), Math.fma(alpha, u.z(), origin.z()))
|
||||
);
|
||||
}
|
||||
|
||||
protected abstract boolean isInterior(double alpha, double beta);
|
||||
|
||||
@Override
|
||||
public @NotNull String toString() {
|
||||
return this.getClass().getSimpleName() + "(origin=" + origin + ", u=" + u + ", v=" + v + ")";
|
||||
}
|
||||
}
|
||||
|
@@ -1,16 +1,21 @@
|
||||
package eu.jonahbauer.raytracing.scene.hittable2d;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.BoundingBox;
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.material.Material;
|
||||
import eu.jonahbauer.raytracing.scene.Target;
|
||||
import eu.jonahbauer.raytracing.scene.util.PdfUtil;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public final class Parallelogram extends Hittable2D {
|
||||
public final class Parallelogram extends Hittable2D implements Target {
|
||||
private final @NotNull AABB bbox;
|
||||
|
||||
public Parallelogram(@NotNull Vec3 origin, @NotNull Vec3 u, @NotNull Vec3 v, @NotNull Material material) {
|
||||
super(origin, u, v, material);
|
||||
this.bbox = new AABB(origin, origin.plus(u).plus(v));
|
||||
}
|
||||
|
||||
@Override
|
||||
@@ -19,9 +24,27 @@ public final class Parallelogram extends Hittable2D {
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<BoundingBox> getBoundingBox() {
|
||||
var a = origin;
|
||||
var b = origin.plus(u).plus(v);
|
||||
return Optional.of(new BoundingBox(Vec3.min(a, b), Vec3.max(a, b)));
|
||||
public @NotNull AABB getBoundingBox() {
|
||||
return bbox;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getProbabilityDensity(@NotNull Vec3 origin, @NotNull Vec3 direction) {
|
||||
if (Double.isNaN(hit0(new Ray(origin, direction), FORWARD))) return 0;
|
||||
|
||||
var o = this.origin.minus(origin);
|
||||
var a = o.unit();
|
||||
var b = o.plus(u).unit();
|
||||
var c = o.plus(v).unit();
|
||||
var d = o.plus(u).plus(v).unit();
|
||||
var angle = PdfUtil.getSolidAngle(a, b, d) + PdfUtil.getSolidAngle(c, b, d);
|
||||
return 1 / angle;
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Vec3 getTargetingDirection(@NotNull Vec3 origin, @NotNull RandomGenerator random) {
|
||||
var alpha = random.nextDouble();
|
||||
var beta = random.nextDouble();
|
||||
return get(alpha, beta).minus(origin);
|
||||
}
|
||||
}
|
||||
|
@@ -1,16 +0,0 @@
|
||||
package eu.jonahbauer.raytracing.scene.hittable2d;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.material.Material;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
public final class Plane extends Hittable2D {
|
||||
public Plane(@NotNull Vec3 origin, @NotNull Vec3 u, @NotNull Vec3 v, @NotNull Material material) {
|
||||
super(origin, u, v, material);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected boolean isInterior(@NotNull Vec3 p) {
|
||||
return true;
|
||||
}
|
||||
}
|
@@ -1,16 +1,16 @@
|
||||
package eu.jonahbauer.raytracing.scene.hittable2d;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.BoundingBox;
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.material.Material;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Optional;
|
||||
|
||||
public final class Triangle extends Hittable2D {
|
||||
private final @NotNull AABB bbox;
|
||||
|
||||
public Triangle(@NotNull Vec3 origin, @NotNull Vec3 u, @NotNull Vec3 v, @NotNull Material material) {
|
||||
super(origin, u, v, material);
|
||||
this.bbox = new AABB(origin, origin.plus(u).plus(v));
|
||||
}
|
||||
|
||||
@Override
|
||||
@@ -19,9 +19,7 @@ public final class Triangle extends Hittable2D {
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<BoundingBox> getBoundingBox() {
|
||||
var a = origin;
|
||||
var b = origin.plus(u).plus(v);
|
||||
return Optional.of(new BoundingBox(Vec3.min(a, b), Vec3.max(a, b)));
|
||||
public @NotNull AABB getBoundingBox() {
|
||||
return bbox;
|
||||
}
|
||||
}
|
||||
|
304
src/main/java/eu/jonahbauer/raytracing/scene/hittable3d/Box.java
Normal file
@@ -0,0 +1,304 @@
|
||||
package eu.jonahbauer.raytracing.scene.hittable3d;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Range;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.material.Material;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import eu.jonahbauer.raytracing.scene.Target;
|
||||
import eu.jonahbauer.raytracing.scene.util.PdfUtil;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
import org.jetbrains.annotations.Nullable;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public final class Box implements Hittable, Target {
|
||||
private final @NotNull AABB box;
|
||||
private final @Nullable Material @NotNull[] materials;
|
||||
|
||||
public Box(@NotNull Vec3 a, @NotNull Vec3 b, @NotNull Material material) {
|
||||
this(new AABB(a, b), material);
|
||||
}
|
||||
|
||||
public Box(@NotNull AABB box, @NotNull Material material) {
|
||||
this(box, Objects.requireNonNull(material, "material"), material, material, material, material, material);
|
||||
}
|
||||
|
||||
public Box(
|
||||
@NotNull Vec3 a, @NotNull Vec3 b,
|
||||
@Nullable Material top, @Nullable Material bottom,
|
||||
@Nullable Material left, @Nullable Material right,
|
||||
@Nullable Material front, @Nullable Material back
|
||||
) {
|
||||
this(new AABB(a, b), top, bottom, left, right, front, back);
|
||||
}
|
||||
|
||||
public Box(
|
||||
@NotNull AABB box,
|
||||
@Nullable Material top, @Nullable Material bottom,
|
||||
@Nullable Material left, @Nullable Material right,
|
||||
@Nullable Material front, @Nullable Material back
|
||||
) {
|
||||
this.box = Objects.requireNonNull(box, "box");
|
||||
this.materials = new Material[] { left, bottom, back, right, top, front };
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<HitResult> hit(@NotNull Ray ray, @NotNull Range range) {
|
||||
// based on AABB#hit with additional detection of the side hit
|
||||
var origin = ray.origin();
|
||||
var direction = ray.direction();
|
||||
var invDirection = direction.inv();
|
||||
|
||||
var tmin = AABB.intersect(box.min(), origin, invDirection);
|
||||
var tmax = AABB.intersect(box.max(), origin, invDirection);
|
||||
|
||||
double tlmax = Double.NEGATIVE_INFINITY;
|
||||
double tumin = Double.POSITIVE_INFINITY;
|
||||
|
||||
Side entry = null;
|
||||
Side exit = null;
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (direction.get(i) >= 0) {
|
||||
if (tmin[i] > tlmax) {
|
||||
tlmax = tmin[i];
|
||||
entry = Side.NEGATIVE[i];
|
||||
}
|
||||
if (tmax[i] < tumin) {
|
||||
tumin = tmax[i];
|
||||
exit = Side.POSITIVE[i];
|
||||
}
|
||||
} else {
|
||||
if (tmax[i] > tlmax) {
|
||||
tlmax = tmax[i];
|
||||
entry = Side.POSITIVE[i];
|
||||
}
|
||||
if (tmin[i] < tumin) {
|
||||
tumin = tmin[i];
|
||||
exit = Side.NEGATIVE[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (tlmax < tumin && tumin >= range.min() && tlmax <= range.max()) {
|
||||
assert entry != null && exit != null;
|
||||
return hit0(tlmax, tumin, entry, exit, ray, range);
|
||||
} else {
|
||||
return Optional.empty();
|
||||
}
|
||||
}
|
||||
|
||||
private @NotNull Optional<HitResult> hit0(double tmin, double tmax, @NotNull Side entry, @NotNull Side exit, @NotNull Ray ray, @NotNull Range range) {
|
||||
double t;
|
||||
Side side;
|
||||
boolean frontFace;
|
||||
Material material;
|
||||
Vec3 normal;
|
||||
if (range.surrounds(tmin) && materials[entry.ordinal()] != null) {
|
||||
t = tmin;
|
||||
side = entry;
|
||||
frontFace = true;
|
||||
material = materials[side.ordinal()];
|
||||
normal = side.normal;
|
||||
} else if (range.surrounds(tmax) && materials[exit.ordinal()] != null) {
|
||||
t = tmax;
|
||||
side = exit;
|
||||
frontFace = false;
|
||||
material = materials[side.ordinal()];
|
||||
normal = side.normal.neg();
|
||||
} else {
|
||||
return Optional.empty();
|
||||
}
|
||||
|
||||
var position = ray.at(t);
|
||||
var uv = material.texture().isUVRequired();
|
||||
var u = uv ? side.getTextureU(box, position) : Double.NaN;
|
||||
var v = uv ? side.getTextureV(box, position) : Double.NaN;
|
||||
return Optional.of(new HitResult(t, position, normal, this, material, u, v, frontFace));
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull AABB getBoundingBox() {
|
||||
return box;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getProbabilityDensity(@NotNull Vec3 origin, @NotNull Vec3 direction) {
|
||||
if (contains(origin)) return 1 / (4 * Math.PI);
|
||||
if (hit(new Ray(origin, direction)).isEmpty()) return 0;
|
||||
|
||||
var solidAngle = 0d;
|
||||
for (var s : Side.values()) {
|
||||
if (!s.isExterior(box, origin)) continue;
|
||||
solidAngle += s.getSolidAngle(box, origin);
|
||||
}
|
||||
|
||||
return 1 / solidAngle;
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Vec3 getTargetingDirection(@NotNull Vec3 origin, @NotNull RandomGenerator random) {
|
||||
if (contains(origin)) return Vec3.random(random);
|
||||
|
||||
// determine sides facing the origin and their solid angles
|
||||
int visible = 0;
|
||||
|
||||
// at most three faces are visible
|
||||
Side[] sides = new Side[3];
|
||||
double[] solidAngle = new double[3];
|
||||
|
||||
double accumSolidAngle = 0;
|
||||
for (var s : Side.values()) {
|
||||
if (!s.isExterior(box, origin)) continue;
|
||||
|
||||
var sa = s.getSolidAngle(box, origin);
|
||||
accumSolidAngle += sa;
|
||||
sides[visible] = s;
|
||||
solidAngle[visible] = accumSolidAngle;
|
||||
visible++;
|
||||
}
|
||||
|
||||
// choose a random side facing the origin based on their relative solid angles
|
||||
var r = random.nextDouble() * solidAngle[visible - 1];
|
||||
for (int j = 0; j < visible; j++) {
|
||||
if (r < solidAngle[j]) {
|
||||
// choose a random point on that side
|
||||
var target = sides[j].random(box, random);
|
||||
return target.minus(origin);
|
||||
}
|
||||
}
|
||||
|
||||
throw new AssertionError();
|
||||
}
|
||||
|
||||
private boolean contains(@NotNull Vec3 point) {
|
||||
return box.min().x() < point.x() && point.x() < box.max().x()
|
||||
&& box.min().y() < point.y() && point.y() < box.max().y()
|
||||
&& box.min().z() < point.z() && point.z() < box.max().z();
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull String toString() {
|
||||
return "Box(min=" + box.min() + ", max=" + box.max() + ")";
|
||||
}
|
||||
|
||||
private enum Side {
|
||||
NEG_X(Vec3.UNIT_X.neg()),
|
||||
NEG_Y(Vec3.UNIT_Y.neg()),
|
||||
NEG_Z(Vec3.UNIT_Z.neg()),
|
||||
POS_X(Vec3.UNIT_X),
|
||||
POS_Y(Vec3.UNIT_Y),
|
||||
POS_Z(Vec3.UNIT_Z),
|
||||
;
|
||||
|
||||
private static final Side[] NEGATIVE = new Side[] {Side.NEG_X, Side.NEG_Y, Side.NEG_Z};
|
||||
private static final Side[] POSITIVE = new Side[] {Side.POS_X, Side.POS_Y, Side.POS_Z};
|
||||
|
||||
private final @NotNull Vec3 normal;
|
||||
|
||||
Side(@NotNull Vec3 normal) {
|
||||
this.normal = Objects.requireNonNull(normal, "normal");
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the texture u coordinate for a position on this side of the box}
|
||||
*/
|
||||
public double getTextureU(@NotNull AABB box, @NotNull Vec3 pos) {
|
||||
return switch (this) {
|
||||
case NEG_X -> (pos.z() - box.min().z()) / (box.max().z() - box.min().z());
|
||||
case POS_X -> (box.max().z() - pos.z()) / (box.max().z() - box.min().z());
|
||||
case NEG_Y, POS_Y, POS_Z -> (pos.x() - box.min().x()) / (box.max().x() - box.min().x());
|
||||
case NEG_Z -> (box.max().x() - pos.x()) / (box.max().x() - box.min().x());
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the texture v coordinate for a position on this side of the box}
|
||||
*/
|
||||
public double getTextureV(@NotNull AABB box, @NotNull Vec3 pos) {
|
||||
return switch (this) {
|
||||
case NEG_X, POS_X, NEG_Z, POS_Z -> (pos.y() - box.min().y()) / (box.max().y() - box.min().y());
|
||||
case NEG_Y -> (pos.z() - box.min().z()) / (box.max().z() - box.min().z());
|
||||
case POS_Y -> (box.max().z() - pos.z()) / (box.max().z() - box.min().z());
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return whether the given position is outside of the box only considering <code>this</code> side}
|
||||
*/
|
||||
public boolean isExterior(@NotNull AABB box, @NotNull Vec3 pos) {
|
||||
return switch (this) {
|
||||
case NEG_X -> pos.x() < box.min().x();
|
||||
case NEG_Y -> pos.y() < box.min().y();
|
||||
case NEG_Z -> pos.z() < box.min().z();
|
||||
case POS_X -> pos.x() > box.max().x();
|
||||
case POS_Y -> pos.y() > box.max().y();
|
||||
case POS_Z -> pos.z() > box.max().z();
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the point on <code>this</code> side of the <code>box</code> with the given <code>u</code>-<code>v</code>-coordinates}
|
||||
*/
|
||||
public @NotNull Vec3 get(@NotNull AABB box, double u, double v) {
|
||||
return switch (this) {
|
||||
case NEG_X -> new Vec3(
|
||||
box.min().x(),
|
||||
Math.fma(v, box.max().y() - box.min().y(), box.min().y()),
|
||||
Math.fma(u, box.max().z() - box.min().z(), box.min().z())
|
||||
);
|
||||
case NEG_Y -> new Vec3(
|
||||
Math.fma(u, box.max().x() - box.min().x(), box.min().x()),
|
||||
box.min().y(),
|
||||
Math.fma(v, box.max().z() - box.min().z(), box.min().z())
|
||||
);
|
||||
case NEG_Z -> new Vec3(
|
||||
Math.fma(u, box.min().x() - box.max().x(), box.max().x()),
|
||||
Math.fma(v, box.max().y() - box.min().y(), box.min().y()),
|
||||
box.min().z()
|
||||
);
|
||||
case POS_X -> new Vec3(
|
||||
box.max().x(),
|
||||
Math.fma(v, box.max().y() - box.min().y(), box.min().y()),
|
||||
Math.fma(u, box.min().z() - box.max().z(), box.max().z())
|
||||
);
|
||||
case POS_Y -> new Vec3(
|
||||
Math.fma(u, box.max().x() - box.min().x(), box.min().x()),
|
||||
box.max().y(),
|
||||
Math.fma(v, box.min().z() - box.max().z(), box.max().z())
|
||||
);
|
||||
case POS_Z -> new Vec3(
|
||||
Math.fma(u, box.max().x() - box.min().x(), box.min().x()),
|
||||
Math.fma(v, box.max().y() - box.min().y(), box.min().y()),
|
||||
box.max().z()
|
||||
);
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return a random point on <code>this</code> side of the <code>box</code>}
|
||||
*/
|
||||
public @NotNull Vec3 random(@NotNull AABB box, @NotNull RandomGenerator random) {
|
||||
var u = random.nextDouble();
|
||||
var v = random.nextDouble();
|
||||
return get(box, u, v);
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the solid angle covered by <code>this</code> side of the <code>box</code> when viewed from <code>pos</code>}
|
||||
*/
|
||||
public double getSolidAngle(@NotNull AABB box, @NotNull Vec3 pos) {
|
||||
var a = get(box, 0, 0).minus(pos).unit();
|
||||
var b = get(box, 0, 1).minus(pos).unit();
|
||||
var c = get(box, 1, 1).minus(pos).unit();
|
||||
var d = get(box, 1, 0).minus(pos).unit();
|
||||
|
||||
return PdfUtil.getSolidAngle(a, b, d) + PdfUtil.getSolidAngle(c, b, d);
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,6 +1,6 @@
|
||||
package eu.jonahbauer.raytracing.scene.hittable3d;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.BoundingBox;
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Range;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
@@ -32,11 +32,11 @@ public record ConstantMedium(@NotNull Hittable boundary, double density, @NotNul
|
||||
if (hitDistance > distance) return Optional.empty();
|
||||
|
||||
var t = tmin + hitDistance / length;
|
||||
return Optional.of(new HitResult(t, ray.at(t), Vec3.UNIT_X, material, true)); // arbitrary normal and frontFace
|
||||
return Optional.of(new HitResult(t, ray.at(t), Vec3.UNIT_X, this, material, 0, 0, true)); // arbitrary normal, u, v and isFrontFace
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<BoundingBox> getBoundingBox() {
|
||||
public @NotNull AABB getBoundingBox() {
|
||||
return boundary().getBoundingBox();
|
||||
}
|
||||
}
|
||||
|
@@ -1,69 +1,117 @@
|
||||
package eu.jonahbauer.raytracing.scene.hittable3d;
|
||||
|
||||
import eu.jonahbauer.raytracing.render.material.Material;
|
||||
import eu.jonahbauer.raytracing.math.BoundingBox;
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Range;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import eu.jonahbauer.raytracing.scene.Target;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public record Sphere(@NotNull Vec3 center, double radius, @NotNull Material material) implements Hittable {
|
||||
public final class Sphere implements Hittable, Target {
|
||||
private final @NotNull Vec3 center;
|
||||
private final double radius;
|
||||
private final @NotNull Material material;
|
||||
|
||||
public Sphere {
|
||||
Objects.requireNonNull(center, "center");
|
||||
Objects.requireNonNull(material, "material");
|
||||
private final @NotNull AABB bbox;
|
||||
|
||||
private final @NotNull Vec3 normalizedCenter;
|
||||
private final double invRadius;
|
||||
|
||||
public Sphere(@NotNull Vec3 center, double radius, @NotNull Material material) {
|
||||
this.center = Objects.requireNonNull(center, "center");
|
||||
this.material = Objects.requireNonNull(material, "material");
|
||||
if (radius <= 0 || !Double.isFinite(radius)) throw new IllegalArgumentException("radius must be positive");
|
||||
}
|
||||
this.radius = radius;
|
||||
|
||||
public Sphere(double x, double y, double z, double r, @NotNull Material material) {
|
||||
this(new Vec3(x, y, z), r, material);
|
||||
this.invRadius = 1 / radius;
|
||||
this.normalizedCenter = this.center.times(-this.invRadius);
|
||||
|
||||
this.bbox = new AABB(
|
||||
center.minus(radius, radius, radius),
|
||||
center.plus(radius, radius, radius)
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<HitResult> hit(@NotNull Ray ray, @NotNull Range range) {
|
||||
var oc = ray.origin().minus(center());
|
||||
var t = hit0(ray, range);
|
||||
if (Double.isNaN(t)) return Optional.empty();
|
||||
|
||||
var position = ray.at(t);
|
||||
var normal = Vec3.fma(invRadius, position, normalizedCenter);
|
||||
var frontFace = normal.times(ray.direction()) < 0;
|
||||
|
||||
double u;
|
||||
double v;
|
||||
if (material.texture().isUVRequired()) {
|
||||
var theta = Math.acos(-normal.y());
|
||||
var phi = Math.atan2(-normal.z(), normal.x()) + Math.PI;
|
||||
u = phi / (2 * Math.PI);
|
||||
v = theta / Math.PI;
|
||||
} else {
|
||||
u = Double.NaN;
|
||||
v = Double.NaN;
|
||||
}
|
||||
|
||||
return Optional.of(new HitResult(
|
||||
t, position, frontFace ? normal : normal.neg(), this,
|
||||
material, u, v, frontFace
|
||||
));
|
||||
}
|
||||
|
||||
private double hit0(@NotNull Ray ray, @NotNull Range range) {
|
||||
var oc = ray.origin().minus(center);
|
||||
|
||||
var a = ray.direction().squared();
|
||||
var h = ray.direction().times(oc);
|
||||
var c = oc.squared() - radius * radius;
|
||||
|
||||
var discriminant = h * h - a * c;
|
||||
if (discriminant < 0) return Optional.empty();
|
||||
if (discriminant < 0) return Double.NaN;
|
||||
|
||||
var sd = Math.sqrt(discriminant);
|
||||
|
||||
double t = (- h - sd) / a;
|
||||
if (!range.surrounds(t)) t = (- h + sd) / a;
|
||||
if (!range.surrounds(t)) return Optional.empty();
|
||||
if (!range.surrounds(t)) return Double.NaN;
|
||||
|
||||
var position = ray.at(t);
|
||||
var normal = position.minus(center);
|
||||
var frontFace = normal.times(ray.direction()) < 0;
|
||||
return Optional.of(new HitResult(t, position, frontFace ? normal : normal.times(-1), material, frontFace));
|
||||
return t;
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<BoundingBox> getBoundingBox() {
|
||||
return Optional.of(new BoundingBox(
|
||||
center.minus(radius, radius, radius),
|
||||
center.plus(radius, radius, radius)
|
||||
));
|
||||
public @NotNull AABB getBoundingBox() {
|
||||
return bbox;
|
||||
}
|
||||
|
||||
public @NotNull Sphere withCenter(@NotNull Vec3 center) {
|
||||
return new Sphere(center, radius, material);
|
||||
@Override
|
||||
public double getProbabilityDensity(@NotNull Vec3 origin, @NotNull Vec3 direction) {
|
||||
if (Double.isNaN(hit0(new Ray(origin, direction), FORWARD))) return 0;
|
||||
|
||||
var cos = Math.sqrt(1 - radius * radius / (center.minus(origin).squared()));
|
||||
var solidAngle = 2 * Math.PI * (1 - cos);
|
||||
return 1 / solidAngle;
|
||||
}
|
||||
|
||||
public @NotNull Sphere withCenter(double x, double y, double z) {
|
||||
return withCenter(new Vec3(x, y, z));
|
||||
@Override
|
||||
public @NotNull Vec3 getTargetingDirection(@NotNull Vec3 origin, @NotNull RandomGenerator random) {
|
||||
var direction = center.minus(origin);
|
||||
var out = Vec3.randomOppositeHemisphere(random, direction);
|
||||
return new Vec3(
|
||||
Math.fma(radius, out.x(), center.x() - origin.x()),
|
||||
Math.fma(radius, out.y(), center.y() - origin.y()),
|
||||
Math.fma(radius, out.z(), center.z() - origin.z())
|
||||
);
|
||||
}
|
||||
|
||||
public @NotNull Sphere withRadius(double radius) {
|
||||
return new Sphere(center, radius, material);
|
||||
@Override
|
||||
public @NotNull String toString() {
|
||||
return "Sphere(center=" + center + ", radius=" + radius + ")";
|
||||
}
|
||||
}
|
||||
|
@@ -1,91 +1,113 @@
|
||||
package eu.jonahbauer.raytracing.scene.transform;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.BoundingBox;
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import eu.jonahbauer.raytracing.scene.Target;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public final class RotateY extends Transform {
|
||||
public sealed class RotateY extends Transform {
|
||||
private final double cos;
|
||||
private final double sin;
|
||||
|
||||
private final @NotNull Optional<BoundingBox> bbox;
|
||||
private final @NotNull AABB bbox;
|
||||
|
||||
public RotateY(@NotNull Hittable object, double angle) {
|
||||
public static @NotNull RotateY create(@NotNull Hittable object, double angle) {
|
||||
if (object instanceof Target) {
|
||||
return new RotateYTarget(object, angle);
|
||||
} else {
|
||||
return new RotateY(object, angle);
|
||||
}
|
||||
}
|
||||
|
||||
private RotateY(@NotNull Hittable object, double angle) {
|
||||
super(object);
|
||||
this.cos = Math.cos(angle);
|
||||
this.sin = Math.sin(angle);
|
||||
|
||||
this.bbox = object.getBoundingBox().map(bbox -> {
|
||||
var min = new Vec3(Double.MAX_VALUE, Double.MAX_VALUE, Double.MAX_VALUE);
|
||||
var max = new Vec3(- Double.MAX_VALUE, - Double.MAX_VALUE, - Double.MAX_VALUE);
|
||||
var bbox = object.getBoundingBox();
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
for (int j = 0; j < 2; j++) {
|
||||
for (int k = 0; k < 2; k++) {
|
||||
var x = i * bbox.max().x() + (1 - i) * bbox.min().x();
|
||||
var y = j * bbox.max().y() + (1 - j) * bbox.min().y();
|
||||
var z = k * bbox.max().z() + (1 - k) * bbox.min().z();
|
||||
var min = new Vec3(Double.MAX_VALUE, Double.MAX_VALUE, Double.MAX_VALUE);
|
||||
var max = new Vec3(- Double.MAX_VALUE, - Double.MAX_VALUE, - Double.MAX_VALUE);
|
||||
|
||||
var newx = cos * x + sin * z;
|
||||
var newz = -sin * x + cos * z;
|
||||
for (int i = 0; i < 2; i++) {
|
||||
for (int j = 0; j < 2; j++) {
|
||||
for (int k = 0; k < 2; k++) {
|
||||
var x = i * bbox.max().x() + (1 - i) * bbox.min().x();
|
||||
var y = j * bbox.max().y() + (1 - j) * bbox.min().y();
|
||||
var z = k * bbox.max().z() + (1 - k) * bbox.min().z();
|
||||
|
||||
var temp = new Vec3(newx, y, newz);
|
||||
var newx = cos * x + sin * z;
|
||||
var newz = -sin * x + cos * z;
|
||||
|
||||
min = Vec3.min(min, temp);
|
||||
max = Vec3.max(max, temp);
|
||||
}
|
||||
var temp = new Vec3(newx, y, newz);
|
||||
|
||||
min = Vec3.min(min, temp);
|
||||
max = Vec3.max(max, temp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new BoundingBox(min, max);
|
||||
});
|
||||
this.bbox = new AABB(min, max);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected @NotNull Ray transform(@NotNull Ray ray) {
|
||||
protected final @NotNull Ray transform(@NotNull Ray ray) {
|
||||
var origin = ray.origin();
|
||||
var direction = ray.direction();
|
||||
|
||||
var newOrigin = new Vec3(
|
||||
cos * origin.x() - sin * origin.z(),
|
||||
origin.y(),
|
||||
sin * origin.x() + cos * origin.z()
|
||||
);
|
||||
var newDirection = new Vec3(
|
||||
cos * direction.x() - sin * direction.z(),
|
||||
direction.y(),
|
||||
sin * direction.x() + cos * direction.z()
|
||||
);
|
||||
|
||||
var newOrigin = transform(origin);
|
||||
var newDirection = transform(direction);
|
||||
return new Ray(newOrigin, newDirection);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected @NotNull HitResult transform(@NotNull HitResult result) {
|
||||
protected final @NotNull HitResult transform(@NotNull HitResult result) {
|
||||
var position = result.position();
|
||||
var newPosition = new Vec3(
|
||||
cos * position.x() + sin * position.z(),
|
||||
position.y(),
|
||||
- sin * position.x() + cos * position.z()
|
||||
);
|
||||
var newPosition = untransform(position);
|
||||
|
||||
var normal = result.normal();
|
||||
var newNormal = new Vec3(
|
||||
cos * normal.x() + sin * normal.z(),
|
||||
normal.y(),
|
||||
-sin * normal.x() + cos * normal.z()
|
||||
);
|
||||
var newNormal = untransform(normal);
|
||||
|
||||
return new HitResult(result.t(), newPosition, newNormal, result.material(), result.frontFace());
|
||||
return result.withPositionAndNormal(newPosition, newNormal);
|
||||
}
|
||||
|
||||
protected final @NotNull Vec3 transform(@NotNull Vec3 vec) {
|
||||
return new Vec3(cos * vec.x() - sin * vec.z(), vec.y(), sin * vec.x() + cos * vec.z());
|
||||
}
|
||||
|
||||
protected final @NotNull Vec3 untransform(@NotNull Vec3 vec) {
|
||||
return new Vec3(cos * vec.x() + sin * vec.z(), vec.y(), - sin * vec.x() + cos * vec.z());
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<BoundingBox> getBoundingBox() {
|
||||
public @NotNull AABB getBoundingBox() {
|
||||
return bbox;
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull String toString() {
|
||||
return object + " rotated by " + Math.toDegrees(Math.atan2(sin, cos)) + "° around the y axis";
|
||||
}
|
||||
|
||||
private static final class RotateYTarget extends RotateY implements Target {
|
||||
|
||||
private RotateYTarget(@NotNull Hittable object, double angle) {
|
||||
super(object, angle);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getProbabilityDensity(@NotNull Vec3 origin, @NotNull Vec3 direction) {
|
||||
return ((Target) object).getProbabilityDensity(transform(origin), transform(direction));
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Vec3 getTargetingDirection(@NotNull Vec3 origin, @NotNull RandomGenerator random) {
|
||||
return untransform(((Target) object).getTargetingDirection(transform(origin), random));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -2,12 +2,15 @@ package eu.jonahbauer.raytracing.scene.transform;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Range;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import eu.jonahbauer.raytracing.scene.Target;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public abstract class Transform implements Hittable {
|
||||
protected final @NotNull Hittable object;
|
||||
|
@@ -1,46 +1,73 @@
|
||||
package eu.jonahbauer.raytracing.scene.transform;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.BoundingBox;
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import eu.jonahbauer.raytracing.scene.Target;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Optional;
|
||||
import java.util.random.RandomGenerator;
|
||||
|
||||
public final class Translate extends Transform {
|
||||
private final @NotNull Vec3 offset;
|
||||
public sealed class Translate extends Transform {
|
||||
protected final @NotNull Vec3 offset;
|
||||
private final @NotNull AABB bbox;
|
||||
|
||||
private final @NotNull Optional<BoundingBox> bbox;
|
||||
public static @NotNull Translate create(@NotNull Hittable object, @NotNull Vec3 offset) {
|
||||
if (object instanceof Target) {
|
||||
return new TranslateTarget(object, offset);
|
||||
} else {
|
||||
return new Translate(object, offset);
|
||||
}
|
||||
}
|
||||
|
||||
public Translate(@NotNull Hittable object, @NotNull Vec3 offset) {
|
||||
private Translate(@NotNull Hittable object, @NotNull Vec3 offset) {
|
||||
super(object);
|
||||
this.offset = offset;
|
||||
this.bbox = object.getBoundingBox().map(bbox -> new BoundingBox(
|
||||
|
||||
var bbox = object.getBoundingBox();
|
||||
this.bbox = new AABB(
|
||||
bbox.min().plus(offset),
|
||||
bbox.max().plus(offset)
|
||||
));
|
||||
}
|
||||
|
||||
@Override
|
||||
protected @NotNull Ray transform(@NotNull Ray ray) {
|
||||
return new Ray(ray.origin().minus(offset), ray.direction());
|
||||
}
|
||||
|
||||
@Override
|
||||
protected @NotNull HitResult transform(@NotNull HitResult result) {
|
||||
return new HitResult(
|
||||
result.t(),
|
||||
result.position().plus(offset),
|
||||
result.normal(),
|
||||
result.material(),
|
||||
result.frontFace()
|
||||
);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<BoundingBox> getBoundingBox() {
|
||||
protected final @NotNull Ray transform(@NotNull Ray ray) {
|
||||
return new Ray(ray.origin().minus(offset), ray.direction());
|
||||
}
|
||||
|
||||
@Override
|
||||
protected final @NotNull HitResult transform(@NotNull HitResult result) {
|
||||
return result.withPositionAndNormal(result.position().plus(offset), result.normal());
|
||||
}
|
||||
|
||||
@Override
|
||||
public final @NotNull AABB getBoundingBox() {
|
||||
return bbox;
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull String toString() {
|
||||
return object + " translated by " + offset;
|
||||
}
|
||||
|
||||
private static final class TranslateTarget extends Translate implements Target {
|
||||
private TranslateTarget(@NotNull Hittable object, @NotNull Vec3 offset) {
|
||||
super(object, offset);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getProbabilityDensity(@NotNull Vec3 origin, @NotNull Vec3 direction) {
|
||||
if (!(object instanceof Target target)) throw new UnsupportedOperationException();
|
||||
return target.getProbabilityDensity(origin.minus(offset), direction);
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Vec3 getTargetingDirection(@NotNull Vec3 origin, @NotNull RandomGenerator random) {
|
||||
if (!(object instanceof Target target)) throw new UnsupportedOperationException();
|
||||
return target.getTargetingDirection(origin.minus(offset), random);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -0,0 +1,67 @@
|
||||
package eu.jonahbauer.raytracing.scene.util;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
import org.jetbrains.annotations.Nullable;
|
||||
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
|
||||
public final class HittableBinaryTree extends HittableCollection {
|
||||
private final @Nullable Hittable left;
|
||||
private final @Nullable Hittable right;
|
||||
private final @NotNull AABB bbox;
|
||||
|
||||
public HittableBinaryTree(@NotNull List<? extends @NotNull Hittable> objects) {
|
||||
bbox = AABB.getBoundingBox(objects).orElse(AABB.EMPTY);
|
||||
if (objects.isEmpty()) {
|
||||
left = null;
|
||||
right = null;
|
||||
} else if (objects.size() == 1) {
|
||||
left = objects.getFirst();
|
||||
right = null;
|
||||
} else if (objects.size() == 2) {
|
||||
left = objects.getFirst();
|
||||
right = objects.getLast();
|
||||
} else {
|
||||
var x = bbox.x().size();
|
||||
var y = bbox.y().size();
|
||||
var z = bbox.z().size();
|
||||
Comparator<AABB> comparator;
|
||||
if (x > y && x > z) {
|
||||
comparator = AABB.X_AXIS;
|
||||
} else if (y > z) {
|
||||
comparator = AABB.Y_AXIS;
|
||||
} else {
|
||||
comparator = AABB.Z_AXIS;
|
||||
}
|
||||
var sorted = objects.stream().sorted(Comparator.comparing(Hittable::getBoundingBox, comparator)).toList();
|
||||
var size = sorted.size();
|
||||
|
||||
left = new HittableBinaryTree(sorted.subList(0, size / 2));
|
||||
right = new HittableBinaryTree(sorted.subList(size / 2, size));
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public void hit(@NotNull Ray ray, @NotNull State state) {
|
||||
if (!bbox.hit(ray, state.getRange())) return;
|
||||
if (left instanceof HittableCollection coll) {
|
||||
coll.hit(ray, state);
|
||||
} else if (left != null) {
|
||||
hit(state, ray, left);
|
||||
}
|
||||
if (right instanceof HittableCollection coll) {
|
||||
coll.hit(ray, state);
|
||||
} else if (right != null) {
|
||||
hit(state, ray, right);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull AABB getBoundingBox() {
|
||||
return bbox;
|
||||
}
|
||||
}
|
@@ -1,14 +1,11 @@
|
||||
package eu.jonahbauer.raytracing.scene.util;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.BoundingBox;
|
||||
import eu.jonahbauer.raytracing.math.Range;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.scene.HitResult;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Collection;
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
|
||||
@@ -23,20 +20,6 @@ public abstract class HittableCollection implements Hittable {
|
||||
|
||||
public abstract void hit(@NotNull Ray ray, @NotNull State state);
|
||||
|
||||
protected static @NotNull Optional<BoundingBox> getBoundingBox(@NotNull Collection<? extends @NotNull Hittable> objects) {
|
||||
var bbox = new BoundingBox(Vec3.ZERO, Vec3.ZERO);
|
||||
for (var object : objects) {
|
||||
var b = object.getBoundingBox();
|
||||
if (b.isPresent()) {
|
||||
bbox = bbox.expand(b.get());
|
||||
} else {
|
||||
bbox = null;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return Optional.ofNullable(bbox);
|
||||
}
|
||||
|
||||
protected static boolean hit(@NotNull State state, @NotNull Ray ray, @NotNull Hittable object) {
|
||||
var r = object.hit(ray, state.range);
|
||||
if (r.isPresent()) {
|
||||
@@ -58,6 +41,10 @@ public abstract class HittableCollection implements Hittable {
|
||||
this.range = Objects.requireNonNull(range);
|
||||
}
|
||||
|
||||
public @NotNull Range getRange() {
|
||||
return range;
|
||||
}
|
||||
|
||||
private @NotNull Optional<HitResult> getResult() {
|
||||
return Optional.ofNullable(result);
|
||||
}
|
||||
|
@@ -1,20 +1,20 @@
|
||||
package eu.jonahbauer.raytracing.scene.util;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.BoundingBox;
|
||||
import eu.jonahbauer.raytracing.math.AABB;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Optional;
|
||||
|
||||
public final class HittableList extends HittableCollection {
|
||||
private final @NotNull List<Hittable> objects;
|
||||
private final @NotNull Optional<BoundingBox> bbox;
|
||||
private final @NotNull AABB bbox;
|
||||
|
||||
public HittableList(@NotNull List<? extends @NotNull Hittable> objects) {
|
||||
this.objects = List.copyOf(objects);
|
||||
this.bbox = getBoundingBox(this.objects);
|
||||
this.objects = new ArrayList<>(objects);
|
||||
this.bbox = AABB.getBoundingBox(this.objects).orElse(AABB.EMPTY);
|
||||
}
|
||||
|
||||
public HittableList(@NotNull Hittable @NotNull... objects) {
|
||||
@@ -27,7 +27,7 @@ public final class HittableList extends HittableCollection {
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<BoundingBox> getBoundingBox() {
|
||||
public @NotNull AABB getBoundingBox() {
|
||||
return bbox;
|
||||
}
|
||||
}
|
||||
|
@@ -1,61 +0,0 @@
|
||||
package eu.jonahbauer.raytracing.scene.util;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.*;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Map.Entry;
|
||||
import java.util.Optional;
|
||||
|
||||
public final class HittableOctree extends HittableCollection {
|
||||
private final @NotNull Octree<Hittable> objects;
|
||||
private final @NotNull Optional<BoundingBox> bbox;
|
||||
|
||||
public HittableOctree(@NotNull List<? extends @NotNull Hittable> objects) {
|
||||
var result = newOctree(objects);
|
||||
this.objects = result.getKey();
|
||||
this.bbox = Optional.of(result.getValue());
|
||||
}
|
||||
|
||||
public HittableOctree(@NotNull Hittable @NotNull... objects) {
|
||||
this(List.of(objects));
|
||||
}
|
||||
|
||||
@Override
|
||||
public void hit(@NotNull Ray ray, @NotNull State state) {
|
||||
objects.hit(ray, object -> hit(state, ray, object));
|
||||
}
|
||||
|
||||
@Override
|
||||
public @NotNull Optional<BoundingBox> getBoundingBox() {
|
||||
return bbox;
|
||||
}
|
||||
|
||||
private static @NotNull Entry<@NotNull Octree<Hittable>, @NotNull BoundingBox> newOctree(@NotNull List<? extends Hittable> objects) {
|
||||
Vec3 center = Vec3.ZERO, max = Vec3.MIN, min = Vec3.MAX;
|
||||
|
||||
int i = 1;
|
||||
for (var object : objects) {
|
||||
var bbox = object.getBoundingBox().orElseThrow();
|
||||
center = Vec3.average(center, bbox.center(), i++);
|
||||
max = Vec3.max(max, bbox.max());
|
||||
min = Vec3.min(min, bbox.min());
|
||||
}
|
||||
|
||||
var dimension = Arrays.stream(new double[] {
|
||||
Math.abs(max.x() - center.x()),
|
||||
Math.abs(max.y() - center.y()),
|
||||
Math.abs(max.z() - center.z()),
|
||||
Math.abs(min.x() - center.x()),
|
||||
Math.abs(min.y() - center.y()),
|
||||
Math.abs(min.z() - center.z())
|
||||
}).max().orElse(10);
|
||||
|
||||
var out = new Octree<Hittable>(center, dimension);
|
||||
objects.forEach(object -> out.add(object.getBoundingBox().get(), object));
|
||||
return Map.entry(out, new BoundingBox(min, max));
|
||||
}
|
||||
}
|
@@ -1,35 +0,0 @@
|
||||
package eu.jonahbauer.raytracing.scene.util;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.material.Material;
|
||||
import eu.jonahbauer.raytracing.scene.Hittable;
|
||||
import eu.jonahbauer.raytracing.scene.hittable2d.Parallelogram;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import java.util.ArrayList;
|
||||
|
||||
public final class Hittables {
|
||||
private Hittables() {
|
||||
throw new UnsupportedOperationException();
|
||||
}
|
||||
|
||||
public static @NotNull Hittable box(@NotNull Vec3 a, @NotNull Vec3 b, @NotNull Material material) {
|
||||
var sides = new ArrayList<Hittable>();
|
||||
|
||||
var min = Vec3.min(a, b);
|
||||
var max = Vec3.max(a, b);
|
||||
|
||||
var dx = new Vec3(max.x() - min.x(), 0, 0);
|
||||
var dy = new Vec3(0, max.y() - min.y(), 0);
|
||||
var dz = new Vec3(0, 0, max.z() - min.z());
|
||||
|
||||
sides.add(new Parallelogram(new Vec3(min.x(), min.y(), max.z()), dx, dy, material)); // front
|
||||
sides.add(new Parallelogram(new Vec3(max.x(), min.y(), max.z()), dz.neg(), dy, material)); // right
|
||||
sides.add(new Parallelogram(new Vec3(max.x(), min.y(), min.z()), dx.neg(), dy, material)); // back
|
||||
sides.add(new Parallelogram(new Vec3(min.x(), min.y(), min.z()), dz, dy, material)); // left
|
||||
sides.add(new Parallelogram(new Vec3(min.x(), max.y(), max.z()), dx, dz.neg(), material)); // top
|
||||
sides.add(new Parallelogram(new Vec3(min.x(), min.y(), min.z()), dx, dz, material)); // bottom
|
||||
|
||||
return new HittableList(sides);
|
||||
}
|
||||
}
|
@@ -0,0 +1,19 @@
|
||||
package eu.jonahbauer.raytracing.scene.util;
|
||||
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
public final class PdfUtil {
|
||||
private PdfUtil() {
|
||||
throw new UnsupportedOperationException();
|
||||
}
|
||||
|
||||
/**
|
||||
* {@return the solid angle of the triangle abc as seen from the origin} The vectors {@code a}, {@code b} and {@code c}
|
||||
* must be unit vectors.
|
||||
*/
|
||||
public static double getSolidAngle(@NotNull Vec3 a, @NotNull Vec3 b, @NotNull Vec3 c) {
|
||||
var angle = 2 * Math.atan(Math.abs(Vec3.tripleProduct(a, b, c)) / (1 + a.times(b) + b.times(c) + c.times(a)));
|
||||
return angle < 0 ? 2 * Math.PI + angle : angle;
|
||||
}
|
||||
}
|
BIN
src/main/resources/earthmap.jpg
Normal file
After Width: | Height: | Size: 158 KiB |
@@ -1,6 +1,6 @@
|
||||
package eu.jonahbauer.raytracing.render.canvas;
|
||||
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import eu.jonahbauer.raytracing.render.ImageFormat;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.junit.jupiter.api.io.TempDir;
|
||||
|
@@ -3,7 +3,7 @@ package eu.jonahbauer.raytracing.scene.hittable3d;
|
||||
import eu.jonahbauer.raytracing.math.Range;
|
||||
import eu.jonahbauer.raytracing.math.Ray;
|
||||
import eu.jonahbauer.raytracing.math.Vec3;
|
||||
import eu.jonahbauer.raytracing.render.Color;
|
||||
import eu.jonahbauer.raytracing.render.texture.Color;
|
||||
import eu.jonahbauer.raytracing.render.material.LambertianMaterial;
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
|